34 resultados para electromagnetic processing of materials (EPM)

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, some of our recent results in microstructure, texture and orientation relationship resulting from the application of an external high magnetic field during diffusional and non-diffusional phase transformation in both steel and functional metallic materials have been summarized. A 12-T magnetic field was applied to the diffusional decomposition of austenite in 0.81C-Fe alloy and martensitic transformation of a Ni-Mn-Ga magnetic shape memory alloy. For the 0.81C-Fe alloy, it was found that the magnetic field induces the formation of proeutectoid ferrite and slightly enhances the <001> fiber component in ferrite in the transverse field direction. The magnetic dipolar interaction between Fe atoms in the transverse field direction accounts for this phenomenon. The magnetic field favors the formation of pearlite with Pitsch-Petch 2 (P-P 2) and Isaichev (IS) orientation relationships (OR) between the lamellar ferrite and cementite. For the Ni-Mn-Ga magnetic shape memory alloy, the magnetic field makes the martensite lamellas to grow in some specific directions with their c-axes [001] orientated to the field direction and transverse field direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new powder manufacturing process for Ti and Mg metallic foams designs porosity, pore size and morphology. These open-cellular foams (pores: 200–500 μm) have exceptional characteristics (e.g., Ti foam porosity 78%, compressive strength 35 MPa, Young's modulus 5.3 GPa). Anticipated applications include biocompatible implant materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous materials are now becoming attractive to researchers interested in both scientific and industrial applications due to their unique combinations of physical, mechanical, thermal, electrical and acoustic properties in conjunction with excellent energy absorption characteristics. Metallic foams allow efficient conversion of impact energy into deformation work, which has led to increasing applications in energy absorption devices. In particular, foams made of aluminum and its alloys are of special interest because they can be used as lightweight panels, for energy absorption in crash situations and sound or heat absorbing functions in the automotive industry with the aim to reduce weight to improve crashworthiness, safety and comfort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current study, ultrafine equiaxed grains with a size of 150 to 800 nm were successfully produced in a Ti-6Al-4V alloy through thermomechanical processing of a martensitic starting microstructure. This was achieved through a novel mechanism of grain refinement consisting of several concurrent processes. This involves the development of substructure in the lath interiors at an early stage of deformation, which progressed into small high-angle segments with increasing strain. Consequently, the microstructure was gradually transformed to an equiaxed ultrafine grained structure, mostly surrounded by high-angle grain boundaries, through continuous dynamic recrystallization. Simultaneously, the supersaturated martensite was decomposed during deformation, leading to the progressive formation of beta phase, mainly nucleated on the intervariant lath boundaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials, whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated targets. This 'laser chemistry' approach, initially applied by our group to the synthesis of P-containing nanostructured carbon foams (NCFs) from triphenylphosphine-based Au and Cu compounds, is broadened in this study to the production of other metal-NCFs and P-free NCFs. Thus, our results show that P-free coordination compounds and commercial organic precursors can act as efficient carbon source for the growth of NCFs. Physicochemical characterization reveals that NCFs are low-density mesoporous materials with relatively low specific surface areas and thermally stable in air up to around 600°C. Moreover, NCFs disperse well in a variety of solvents and can be successfully chemically processed to enable their handling and provide NCF-containing biocomposite fibers by a wet-chemical spinning process. These promising results may open new and interesting avenues toward the use of NCFs for technological applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, most research work on multimedia information processing is focused on multimedia information storage and retrieval, especially indexing and content-based access of multimedia information. We consider multimedia information processing should include one more level-post-processing. Here "post-processing" means further processing of retrieved multimedia information, which includes fusion of multimedia information and reasoning with multimedia information to reach new conclusions. In this paper, the three levels of multimedia information processing storage, retrieval, and post-processing- are discussed. The concepts and problems of multimedia information post-processing are identified. Potential techniques that can be used in post-processing are suggested, By highlighting the problems in multimedia information post-processing, hopefully this paper will stimulate further research on this important but ignored topic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studied the wool and alpaca fibre curvature and its variation during the fibre processing. It revealed the effect of wool fibre crimp on the cohesion properties of alpaca and wool blended slivers. Different wool and alpaca tops were blended via a number of gillings, and the role of wool fibre curvature in alpaca/wool blend processing has also been investigated. During the wool fibre processing, fibre curvature tended to diminish gradually from scoured fibre to top. Blending wool with alpaca fibres improved the cohesion properties of the blended sliver, compared with pure alpaca slivers. For a high ratio of alpaca component in the blend, a high-crimp wool should be used to achieve good sliver cohesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper nanocrystallite apatite coating on TiZr substrate was prepared by a biomimetic process. Surface morphology, thickness, crystalline phases a~nd bond strength of the coating were investigated by SEM, XRD and tensIle test, respectively. Results show that the apatite coating exhibIts a nanocrystalIite structure with similar stoichiometry to that of natural bone. The apatite layer becomes thicker with the increasing of the SBF immersion time and is firmly adhered to the substrate with the highest average bond strength of 15.5 MPa. This nanocrystallite apatite coating is expected to bond to surrounding bone tissue directly in vivo after implantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of high albedo materials reduces the amount of solar radiation absorbed through building envelops and urban structures and thus keeping their surfaces cooler. The cooling energy savings by using high albedo materials have been well documented. Higher surface temperatures add to increasing the ambient temperature as convection intensity is higher. Such temperature increase has significant impacts on the air conditioning energy utilization in hot climates. This study makes use of a parametric approach by varying the temperature of building facades to represent commonly used materials and hence analyzing its effect on the air temperature through a series of CFD (Computational Fluid Dynamics) simulations. A part of the existing CBD (Central Business District) area of Singapore was selected for the study. Series of CFD simulations have been carried out using the software CFX-5.6. Wind tunnel experiments were also conducted for validation. It was found that at low wind speeds, the effect of materials on the air temperature was significant and the temperature at the middle of a narrow canyon increased up to 2.52°C with the façade material having lowest albedo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temper rolling and tension levelling are commonly used to manufacture flat rolled steel. Both processes lengthen the steel at strains up to 3% by applying a load and stretching the strip. By latering the balance between the load and the tension the formability of the low carbon and ultra low carbon steel may be optimised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model selection scheme was extended to a multi-dimensional representation of the hot torsion test torque, twist and twist rate data to calculate partial derivatives of the torque data with respect to twist and twist rate. These enabled calculation of the instantaneous strain and strain rate hardening indices in the Fields and Backofen method. The concept of an iso-parametric shape function has been borrowed from the finite element method for adding twist rate as a dependant variable to the torque-twist models identified by the model selection scheme. Expressions to calculate the hardening indices, when employing a rational model of torsion data, were derived and presented. Subsequently, the models were used for post processing the data and determining hot strength behaviour, taking into account variations of strain and strain rate hardening indices during the deformation. To substantiate the technique, the hot flow behaviour of API-X70 micro-alloyed steel was determined using a range of hot torsion test data for the material. The flow stress obtained using the instantaneous hardening indices were compared with that obtained by the orthodox technique. For the investigated cases, the onset of dynamic recrystallization (DRX) predicted by the presented technique deviated considerably from those obtained when the average indices were used.