34 resultados para electrochemical electrodes

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate that the interfacial energy between mercury and mica is a function of charge on the mercury surface, decreasing with increasing positive charge. The contact angle of mercury on mica has been measured as a function of potential applied to the mercury, which forms the working electrode of a cell containing either KC1 or NaF electrolyte solution. At high negative applied potentials, a stable aqueous film exists between the mercury and mica surface. As potential is made less negative, the film collapses and mercury partial1 wets the mica at a critical potential, close to the electrocapillary maximum. Upon increasing the potential further (making the Hg surface more and more positive), the contact angle measured within the mercury continually decreases. Electrowetting with mercury is not unexpected since its interfacial tension with the aqueous phase is known to be a function of applied potential. However, the observed decrease goes against the trend expected from the Young equation if only this effect is considered. To explain the data we must allow the mercury/mica interfacial tension also to vary with applied potential. This variation indicates that the mercury surface is positively charged by contact with mica, consistent with known contact electrification between these two materials. The inherent charges at the mercury interfaces with mica and electrolyte solution result in contact angle changes of some tens of degrees with a change in applied potential of half a volt orders of magnitude less than the potentials required to effect comparable changes in other electrowetting systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modification of glassy carbon electrodes with random dispersions of nanotubes is currently the most popular approach to the preparation of carbon nanotube modified electrodes. The performance of glassy carbon electrodes modified with a random dispersion of bamboo type carbon nanotubes was compared with single walled carbon nanotubes modified glassy carbon electrodes and bare glassy carbon electrodes. The electrochemical performance of all three types for electrode were compared by investigating the electrochemistry with solution species and the oxidation of guanine and adenine bases of surface adsorbed DNA. The presence of edge planes of graphene at regular intervals along the walls of the bamboo nanotubes resulted in superior electrochemical performance relative to SWNT modified electrodes from two aspects. Firstly, with solution species the peak separation of the oxidation and reduction waves were smaller indicating more rapid rates of electron transfer. Secondly, a greater number of electroactive sites along the walls of the bamboo-carbon nanotubes (BCNTs) resulted in larger current signals and a broader dynamic range for the oxidation of DNA bases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although metal dithiocarbamate complexes have been studied extensively, there is in sate cases a distinct lack of data concerning redox properties and the products thereof. This is particularly true for complexes of the late transition and main group metals which are important in agriculture, industry, and chemical analysis. Hence, using electrochemical techniques, the redox behaviour of dithiocarbamate complexes of zinc, cadmium, mercury, lead, and tellurium has been examined. The products of oxidation and reduction have also been characterized by spectroscopic techniques (NMR, EPR, UV, and IR), mass spectrometry, conductivity, and Where possible, crystallographic study of an isolated compound. The species studied were without exception labile with the result that electrochemistry at mercury electrodes was influenced by the great stability of the mercury dithiocarbamate (Hg(RR’dtc) 2) complexes. Investigation of the latter showed that oxidative processes in the presence of mercury led to a new class of expounds: polymeric mercury dithiocarbamato cations. Oily one of these could be isolated as a solid, with the formula [Hg5(RR’dtc) 8](C104)2 For R=R’=ethyl the crystal structure was determined. For other metal dithiocarbamates the electrochemical behaviour at mercury electrodes in many ways paralleled that of the mercury analogues. Thus oxidative processes involved oxidation of electrode mercury to form mixed metal cationic species. Polarographic reduction led to the metal amalgam, usually via formation of mercury dithiocarbamate. Electrochemical studies at inert electrode materials such as platinum yielded distinctly different responses, with both oxidation and reduction being more difficult. Oxidation products at platinum electrodes gave identical polarographic responses to those firm mercury electrodes due to rapid interaction of the former with electrode mercury. The results are in sharp contrast to much of the previous work on transition metal dithiocarbamates for which electrochemical redox processes are often metal based arid not explicated by interaction with the electrode material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical metal ion sensor has been developed with a detection limit of less than 0.2 ppt by the covalent attachment of the tripeptide Gly-Gly-His as a recognition element to a 3-mercaptopropionic acid modified gold electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical sensors for copper ions in environmental samples were prepared by modifying gold electrodes with l-cysteine by self-assembly. The adsorption of l-cysteine on gold electrodes was studied by electrochemical reductive desorption in 0.5 M KOH, and the interaction of l-cysteine with copper ions was investigated by cyclic voltammetry, chronoamperometry and X-ray photoelectron spectroscopy. At low concentrations the ratio of l-cysteine to bound Cu(II) is 2:1. At higher concentrations (0.1 M) copper reacts with adsorbed cysteine forming copper sulfide on the electrode surface. On a modified l-cysteine gold electrode, Osteryoung square wave voltammetric determination of Cu(II) with a detection limit below 5 ppb has been demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical sensor for the detection of Cu2+ is reported which incorporates poly-l-aspartic acid (PLAsp) with 32–96 aspartate units as a selective ligand for the metal ion. PLAsp is covalently attached to a gold electrode modified with a monolayer of 3-mercaptopropionic acid using carbodiimide coupling via an N-hydroxysuccinimide (NHS) ester intermediate. The acid side groups and deprotonated peptide nitrogens on two aspartate moieties are thought to be primarily responsible for chelation of Cu2+, which remains bound when reduced to Cu+. A consequence of the multiple binding points that are available with a polypeptide is the low detection limit. The lowest concentration detected was 3 nM (0.2 ppb) achieved with Osteryoung square wave voltammetry. This detection limit compares favourably with that of ICP-OES and previously reported cysteine-modified electrodes. Analysis of tap and lake water samples using the PLAsp-modified electrode agreed well with ICP-OES analysis of the same samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modification of electrodes with the tripeptide Gly–Gly–His for the detection of copper in water samples is described in detail. The tripeptide modified electrode was prepared by first self-assembling 3-mercaptopropionic acid (MPA) onto the gold electrode followed by covalent attachment of the tripeptide to the self-assembled monolayer using carbodiimide coupling. The electrodes were characterized using electrochemistry, a newly developed mass-spectrometry method and quantum mechanical calculations. The mass spectrometry confirmed the modification to proceed as expected with peptide bonds formed between the carboxylic acids of the MPA and the terminal amine of the peptide. Electrochemical measurements indicated that approximately half the MPA molecules in a SAM are modified with the peptide. The peptide modified electrodes exhibited high sensitivity to copper which is attributed to the stable 4N coordinate complex the peptide formed around the metal ion to give copper the preferred tetragonal coordination. The formation of a 4 coordinate complex was predicted using quantum mechanical calculation and confirmed using mass spectrometry. The adsorption of the copper to the peptide modified electrode was consistent with a Langmuir isotherm with a binding constant of (8.1 ± 0.4) 1010 M−1 at 25 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation and characterization of a series of ionic liquids based on S-alkyl thiolonium, S-alkyl thiotetrazolium, or S-alkyl thiobenzolium cations coupled with bis(trifluoromethanesulfonyl)amide, trifluoromethanesulfonate, alkyl phosphate, chloride, and hexafluorophosphate anions are reported. All are liquid at room temperature, except the chloride salt, which has a melting point of 92 °C. The electrochemical characteristics of this class of ionic liquid have been determined by cyclic voltammetry. Potential windows of the ionic liquids have been obtained at glassy carbon, platinum, and gold electrodes and found to be the largest at glassy carbon, but are limited by oxidation of the thioether-functionalized cation. The voltammetry of IUPAC reference potential scale systems, ferrocene/ferrocenium, cobaltocenium/cobaltocene, and decamethylferrocene/decamethylferrocenium have been evaluated, with the last being most widely applicable. Nonadditivity of Faradaic current is found in the voltammograms of decamethylferrocene in the presence of ferrocene and cobaltocenium. Diffusion coefficient, viscosity, ionic conductivity, double layer capacitance, and other physical properties have also been measured. The dependence of the diffusion coefficient vs viscosity follows the Stokes−Einstein relationship. The properties of the ionic liquids are compared with the related imidazolium family of ionic liquids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ionic liquid (IL) N-methyl-N-butylmorpholinium bis(fluorosulfonyl)imide (C4mmor FSI) is examined from physical and electrochemical perspectives. Pulsed field gradient NMR spectroscopy shows that ion diffusivities are low compared with similar, non-ethereal ILs. Ionicity values indicate that above room temperature, less than 50% of ions contribute to conductivity.

Lithium cycling in symmetrical cells using a C4mmor FSI-based electrolyte is best demonstrated at elevated temperatures. Specific capacities of 130 mAh g−1 are achieved in a Li−LiFePO4 battery at 85 °C. FT-IR spectroscopic investigations of lithium electrodes suggest the presence of alkoxide species in the solid electrolyte interphase (SEI), implying a ring-opening reaction of C4mmor with lithium metal. In contrast, the SEI derived from N-methyl-N-propylpiperidinium FSI lacks the alkoxide signature but shows signs of alkyl unsaturation, and the activation energy for Li+ transport through this SEI is slightly lower than that for the C4mmor-derived SEI. Our detailed findings give insight into the capabilities and limitations of rechargeable lithium metal batteries utilizing a C4mmor FSI electrolyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - The objective of this work was to develop practical experimental techniques for monitoring corrosion in "difficult-to-test" conditions such as corrosion under insulation (CUI).

Design/methodology/approach - An electrochemically integrated multi-electrode array namely the wire beam electrode (WBE) method has been used in combination with noise signature analysis for the first time to monitor the penetration of corrosive species under simulated corrosion-under-insulation conditions. Corrosion of aluminium exposed under insulation materials such as rock wool, glass wool, cotton wool and tissue paper has been successfully monitored.

Findings - A typical potential noise signature of a major potential jump from AA1100 WBE was observed which corresponded to the corrosive species reaching the WBE surface in WBE current distribution map. A good correlation between the galvanic current maps and the corroded surface was also observed.

Originality/value - The preliminary results suggest that the proposed novel electrochemical method is capable of monitoring CUI.