6 resultados para dye-doped polymer optical fiber

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an approach for the efficient design of polarization insensitive polymeric optical waveguide devices considering stress-induced effects. In this approach, the stresses induced in the waveguide during the fabrication process are estimated first using a more realistic model in the finite element analysis. Then we determine the perturbations in the material refractive indices caused by the stress-optic effect. It is observed that the stresses cause non-uniform optical anisotropy in the waveguide materials, which is then incorporated in the modal analysis considering a multilayer structure of waveguide. The approach is exploited in the design of a Bragg grating on strip waveguide. Excellent agreement between calculated and published experimental results confirms the feasibility of our approach in the accurate design of polarization insensitive polymer waveguide devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, optical sensing performance of tapered multimode fiber tip coated with graphene oxide (GO) nanostructured thin film towards aqueous ethanol with different concentrations is investigated. The tapering process of the optical fiber is done by a glass processing machine. The multimode optical fiber tip is dip-coated with GO and annealed at 70 °C to enhance the binding of the nanomaterials to the silica fiber. FESEM, Raman microscopy and XRD analyses are performed to micro-characterize the GO thin films. The morphology of the GO is observed to be in sheets forms. The reflectance response of the GO coated fiber tip is compared with the uncoated tip. The measurements are taken using a spectrophotometer in the optical wavelength range of 550-720 nm. The reflectance response of the GO coated fiber tip reduced proportionally, upon exposure to ethanol with concentration range of 5-80%. The dynamic response of the developed sensor showed strong reversibility and repeatability when it is exposed to ethanol with concentrations of 5%, 20% and 40% in distilled water. At room temperature, the sensor shows fast response and recovery as low as 19 and 25 s, respectively. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten anionic compounds, including four acidic dyes, were used to dope polypyrrole powder. The effects of the dopants on density, optical absorption and conductivity of the polypyrroles were studied. The presence of the dopant in the conducting polymer matrix was verified by ATR-FTIR spectroscopy. Density function theory (DFT) simulation was used to understand the effect of the dopants on the solid structure, optical absorption and energy band structures. Anthraquinone-2-sulfonic acid-doped polypyrrole yielded the highest conductivity. The dye-doped polypyrrole showed an enhancement in its UV–vis optical absorption.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrated optical detection is considered to be an important operation in lab-on-a-chips. This paper presents an optical fiber-based micro-sensor that is capable of detecting food substance particles in a lab-on-a-chip. The system consists of a microcontroller and associated circuitry, a laser emitter, a laser receiver, fiber optic cables, a microfluidics chip, and the food substance samples to be tested. When the particles flow through the microfluidic channel in the chip, the receiver’s output voltage varies due to the particles blocking the passage of the laser ray. The changes in the collected signals are analyzed to count the number of particles. Experiments are conducted on several food substance samples including talcum powder, ground ginger, and soy sauce. The experimental results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coloured conducting textiles have shown a wide range of potential applications in heating fabrics, electromagnetic wave absorption, and wearable optoelectronic devices. This research aimed at clarifying some issues occurred in the research project on coloured conductive textiles. The investigation firstly clarified a possible chemical reaction that took place between a commercial dispersing dye (Terasil Red G) and the conducting polymer polypyrrole, through chemical separation, structural identification and spectrum characterisations. Then, a series of acidic dyes were introduced into polypyrrole matrix during the vapour coating of conducting polymer on the wool fabrics. Colour and thermal stability studies were conducted. Finally, the polypyrrole nanoparticles (particle size several~200nm) were prepared by a microemulsion polymerisation technique. An acid dye was used as the dopant to re-dope the nanoparticles. The effect of the acidic dye on the optical absorption of nanoparticles was studied. Applying the conducting nanoparticles on wool fabrics may open an alternative path to achieve the coloured conducting textiles.