8 resultados para double-coating cathode

em Deakin Research Online - Australia


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Composite LiFe0.4Mn0.6PO4/C microspheres are considered advanced cathode materials for electric vehicles and other high-energy density applications due to their advantages of high energy density and excellent cycling stability. LiFe0.4Mn0.6PO4/C microspheres have been produced using a double carbon coating process employing traditional industrial techniques (ball milling, spray-drying and annealing). The obtained LiFe0.4Mn0.6PO4 microspheres exhibit a high discharge capacity of around 166 mA h g-1 at 0.1 C and excellent rate capabilities of 132, 103, and 72 mA h g-1 at 5, 10, and 20 C, respectively. A reversible capacity of about 152 mA h g-1 after 500 cycles at a current density of 1 C indicates an outstanding cycling stability. The excellent electrochemical performance is attributed to the micrometer-sized spheres of double carbon-coated LiFe0.4Mn0.6PO4 nanoparticles with improved electric conductivity and higher Li ion diffusion coefficients, ensuring full redox reactions of all nanoparticles. The results show that the advanced high-energy density cathode materials can be produced using existing industry techniques.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

in situ high-temperature X-ray diffraction and thermal gravimetric- differential thermal analysis on room-temperature powder, as well as X-ray diffraction, Raman spectroscopy, and transmission electron microscopy on quenched powder, were applied to study crystal structure and phase transformations in Ba2Bi0.1Sc0.2Co 1.7O6-x (BBSC). Heating BBSC in air to over 800 °C produces a pure cubic phase with space group Fm3m (no. 225), and cooling down below 800 °C leads to a mixture of three noncubic phases including an unknown phase between 200 and 650 °C, a 2H hexagonal BaCoO3 with space group P63/mmc (no. 194) between 600 and 800 °C, and an intermediate phase at 800 °C. These three phases exist concurrently with the major cubic phase. The weight gain and loss between 300 and 900 °C suggest the occurrence of cobalt reduction, oxidation, and disproportion reactions with dominant reduction reaction at above 600 °C. The thermal expansion of BBSC was also examined by dilatometry. BBSC has a highly temperature-dependent thermal expansion coefficient which relates well with its structure evolution. Furthermore, the oxygen reduction reaction (ORR) of BBSC was probed by symmetrical cell and three-electrode configurations. The presence of hexagonal phase at 700 °C rarely affects the ORR performance of BBSC as evidenced by a slight increase of its area-specific resistance (ASR) value following 48 h of testing in this three-electrode configuration. This observation is in contrast to the commonly held point of view that noncubic phase deteriorates performance of perovskite compounds (especially in oxygen transport applications). Moreover, cathodic polarization treatment, for example, current discharge from BBSC (tested in three-electrode configuration), can be utilized to recover the original ORR performance. The cubic structure seems to be retained on the cathodic polarization - the normal cathode operating mode in fuel cells. Stable 72-h performance of BBSC in cathodic polarization mode further confirms that despite the presence of phase impurities, BBSC still demonstrates good performance between 500 and 700 °C, the desired intermediate operating temperature in solid oxide fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydroxyapatite/titania (HA/TiO2) double layers were coated onto Ti scaffolds throughout for orthopaedic applications by sol-gel method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and X-ray diffractometry (XRD) were used for the characterisation of the phase transformations of the dried gels and coated surface structures. Scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) was used for the observation and evaluation of the morphology and phases of the surface layers and for the assessment of the in vitro tests. The in vitro assessments were performed by soaking the HA/TiO2 double coated samples into the simulated body fluid (SBF) for various periods. The TiO2 layer was coated by a dipping-coating method at a speed of 12 cm/min, followed by a heat treatment at 600 °C for 20 min. The HA layer was subsequently dipping-coated on the outer surface at the same speed and then heat-treated at difference temperatures. The results indicat that the HA phase begins to crystallize after a heat treatment at 560 °C. The crystallinity increases obviously at 760 °C. SEM observations find no delamination or crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA/TiO2 coated Ti scaffolds displays excellent bone-like apatite forming ability when it is soaked into SBF. Ti scaffolds after HA/TiO2 double coatings can be anticipated as promising implant materials for orthopaedic applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substrate-induced coagulation (SIC) is a coating process based on self-assembly for coating different surfaces with fine particulate materials. The particles are dispersed in a suitable solvent and the stability of the dispersion is adjusted by additives. When a surface, pre-treated with a flocculant e.g. a polyelectrolyte, is dipped into the dispersion, it induces coagulation resulting in the deposition of the particles on the surface. A non-aqueous SIC process for carbon coating is presented, which can be performed in polar, aprotic solvents such as N-Methyl-2- pyrrolidinone (NMP). Polyvinylalcohol (PVA) is used to condition the surface of substrates such as mica, copperfoil, silicon-wafers and lithiumcobalt oxide powder, a cathode material used for Li-ion batteries. The subsequent SIC carbon coating produces uniform layers on the substrates and causes the conductivity of lithiumcobalt oxide to increase drastically, while retaining a high percentage of active battery material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layered oxides of Sr4Fe4Co2O13 (SFC2) which contains alternating perovskite oxide octahedral and polyhedral oxide double layers are attractive for their mixed ionic and electronic conducting and oxygen reduction reaction properties. In this work, we used the EDTA–citrate synthesis technique to prepare SFC2 and vary the calcination temperature between 900 and 1100 _C to obtain SFC2, containing different phase content of perovskite (denoted as SFC-P) and (Fe,Co) layered oxide phases (SFC-L). Rietveld refinements show that the SFC-P phase content increased from _39 wt% to _50 wt% and _61 wt% as the calcination temperature increased from 900 _C (SFC2-900) to 1000 _C (SFC2-1000) and 1050 _C (SFC2-1050). At 1100 _C (SFC2-1100), SFC-P became the dominant phase. The oxygen transport properties (e.g. oxygen chemical diffusion coefficient and oxygen permeability), electrical conductivity and oxygen reduction reaction activity is enhanced in the order of SFC2-1000, SFC2-1100 and SFC2-1050. The trend established here therefore negates the hypothesis that the perovskite phase content correlates with the oxygen transport property enhancement. The results suggest instead that there is an optimum composition value (e.g. 61 wt% of SFC-L for SFC2-1050 in this work) on which synergistic effects take place between the SFC-P and SFC-L phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through comparative studying on LiFePO4/C preparation process of adding carbon source in precursor and pre-sintered material, marked as LFP-1 (in-situ carbon coating) and LFP-2 respectively, by means of C-S test, XRD, SEM, BET, Raman, the effects of carbon content, morphology, particle size and surface carbon structure on the electrochemical performance of LiFePO4/C cathodes were investigated. SEM images showed that particle sizes of LFP-1 and LFP-2 are about 10μm and 100nm respectively. The EIS and galvnostatic charge-discharge tests indicated that LFP-1 has lower charge transfer resistance (Rct), better rate and cycle performance than that of LFP-2, which can be attributed to the different microstructure and the higher degree of graphitized carbon of LiFePO4/C. Raman spectroscopic analysis showed that the ratio of the ID/IG and Asp3/Asp2 of LFP-1 is lower that of LFP-2, which means the degree of graphitized carbon of LFP-1 is higher than that of LEP-2. These results have important significance for improving the overall performance of olivine cathode materials for lithium ion batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LiFe1 − xSmxPO4/C cathode materials were synthesized though a facile hydrothermal method. Compared with high-temperature solid-phase sintering, the method can allow for the fabrication of low Sm content (2 %), a scarce and expensive rare earth element, while the presence of an optimized carbon coating with large amount of sp2-type carbon sharply increases the material’s electrochemical performance. The high-rate dischargeability at 5 C, as well as the exchange current density, can be increased by 21 and 86 %, respectively, which were attributed to the fine size and the large cell parameter a/c as much. It should be pointed out that the a/c value will be increased for the LiFePO4 Sm-doped papered by both of the two methods, while the mechanism is different: The value c is increased for the front and the value a is decreased for the latter, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LiFe1 − xSmxPO4/C cathode materials were synthesized though a facile hydrothermal method. Compared with high-temperature solid-phase sintering, the method can allow for the fabrication of low Sm content (2 %), a scarce and expensive rare earth element, while the presence of an optimized carbon coating with large amount of sp2-type carbon sharply increases the material’s electrochemical performance. The high-rate dischargeability at 5 C, as well as the exchange current density, can be increased by 21 and 86 %, respectively, which were attributed to the fine size and the large cell parameter a/c as much. It should be pointed out that the a/c value will be increased for the LiFePO4 Sm-doped papered by both of the two methods, while the mechanism is different: The value c is increased for the front and the value a is decreased for the latter, respectively.