22 resultados para dissociation constants

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intestinal fatty acid binding protein (I-FABP) is present at high levels in the absorptive cells of the intestine (enterocytes), where it plays a role in the intracellular solubilization of fatty acids (FA). However, I-FABP has also been shown to bind to a range of non-FA ligands, including some lipophilic drug molecules. Thus, in addition to its central role in FA trafficking, I-FABP potentially serves as an important intracellular carrier of lipophilic drugs. In this study we provide a detailed thermodynamic analysis of the binding and stability properties of I-FABP in complex with a series of fibrate and fenamate drugs to provide an insight into the forces driving drug binding to I-FABP. Drug binding and selectivity for I-FABP are driven by the interplay of protein−ligand interactions and solvent processes. The Gibbs free energies (ΔG°) determined from dissociation constants at 25 °C ranged from −6.2 to −10 kcal/mol. The reaction energetics indicate that drug binding to I-FABP is an enthalpy−entropy driven process. The relationship between I-FABP stability and drug binding affinity was examined by pulse proteolysis. There is a strong coupling between drug binding and I-FABP stability. The effect of an I-FABP protein sink on the kinetics and thermodynamics of tolfenamic acid permeation across an artificial phospholipid membrane were investigated. I-FABP significantly decreased the energy barrier for desorption of tolfenamic acid from the membrane into the acceptor compartment. Taken together, these data suggest that the formation of stable drug−I-FABP complexes is thermodynamically viable under conditions simulating the reactant concentrations likely observed in vivo and maybe a significant biochemical process that serves as a driving force for passive intestinal absorption of lipophilic drugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The one-electron reduction of [α2-FeIII(OH2)P2W17O61]7- at a glassy carbon electrode was investigated using cyclic and rotating-disk-electrode voltammetry in buffered and unbuffered aqueous solutions over the pH range 3.45−7.50 with an ionic strength of approximately 0.6 M maintained. The behavior is well-described by a square-scheme mechanism P + e- ↔ Q (E10/ = −0.275 V, k10/ = 0.008 cm s-1, and α1 = 1/2), PH+ + e- ↔ QH+ (E20/ = −0.036 V, k20/ = 0.014 cm s-1, and α2 = 1/2), PH+ ↔ P + H+ (KP = 3.02 × 10-6 M), and QH+ ↔ Q + H+ (KQ = 2.35 × 10-10 M), where P, Q, PH+, and QH+ correspond to [α2-FeIII(OH)P2W17O61]8-, [α2-FeII(OH)P2W17O61]9-, [α2-FeIII(OH2)P2W17O61]7-, and [α2-FeII(OH2)P2W17O61]8-, respectively; E10‘ and E20‘ are the formal potentials, k10‘ and k20‘ are the formal (standard) rate constants, and KP and KQ are the acid dissociation constants for the relevant reactions. The analysis for the buffered media is based on the approach of Laviron who demonstrated that a square scheme with fully reversible protonations, reversible or quasi reversible electron transfers with the assumption that α1 = α2, can be well-described by the behavior of a simple redox couple, ox + e- ↔ red, whose formal potential, Eapp0‘, and standard rate constant, kapp0‘, are straightforwardly derived functions of pH, as are the values of E10‘, k10‘, E20‘, k20‘, and KP (only three of the four thermodynamic parameters in a square scheme can be specified). It was assumed that αapp = 1/2, and the simulation program DigiSim was used to determine the values of Eapp0‘ and kapp0‘, which are required to describe the cyclic voltammograms obtained in buffered media in the pH range from 3.45 to 7.52 (buffer-related reactions which effect general acid−base catalysis are included in the simulations). DigiSim simulations of cyclic voltammograms obtained in unbuffered media yielded the values of E10‘ and k10‘; KQ was then directly computed from thermodynamic constraints. These simulations included additional reactions between the redox species and H2O. The value of the diffusion coefficient of the [α2-FeIII(OH2)P2W17O61]7-, 2.92 × 10-6 cm2 s-1, was determined using DigiSim simulations of voltammograms at a rotating disk electrode in buffered and unbuffered media at pH 3.45. The diffusion coefficients of all redox species were assumed to be identical. When the pH is greater than 6, instability of P (i.e., [α2-FeIII(OH)P2W17O61]8-) led to the loss of the reactant and precluded lengthy experimentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The syntheses of cyclo-[R2Sn(OPPh2O)2SnR2](O3SCF3)2 (R = Me (1), t-Bu (2)) by the consecutive reaction of R2SnO (R = Me, t-Bu) with triflic acid and diphenylphosphinic acid are presented. In the solid state, 1 and 2 were investigated by 119Sn MAS and 31P MAS NMR spectroscopy as well as X-ray crystallography and appear to exist as ion pairs of cyclo-[R2Sn(OPPh2O)2SnR2]2+ dications and triflate anions. In solution, 1 and 2 are involved in extensive equilibria processes featuring cationic diorganotin(IV) species with Sn-O-P linkages, as evidenced by 119Sn and 31P NMR spectroscopy, electrospray mass spectrometry, and conductivity measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The condensation of [Ph2(OH)Sn(CH2)nSn(OH)Ph2] (1-3; n = 1-3) with HO3SCF3 and HO2PPh2 provided [Ph2Sn(CH2)nSnPh2(OH)](O3SCF3) (4-6; n = 1-3) and [Ph2(O2PPh2)Sn(CH2)nSn(O2PPh2)Ph2] (10-12; n = 1-3), respectively. The reaction of [Ph2Sn(CH2)nSnPh2(OH)](O3SCF3) (4-6; n = 1-3) with HO2PPh2 and NaO2PPh2 gave rise to the formation of [Ph2Sn(CH2)nSnPh2(O2PPh2)](O3SCF3) (7-9; n = 1-3) and [Ph2(OH)Sn(CH2)nSn(O2PPh2)Ph2] (13-15; n = 1-3), respectively. In the solid state, compounds 4-9 comprise ion pairs of cationic cyclo-[Ph2SnCH2SnPh2(OH)]22+, cyclo-[Ph2Sn(CH2)nSnPh2(OH)]+ (n = 2, 3), and cyclo-[Ph2Sn(CH2)nSnPh2(O2PPh2)]+ (n = 1-3) and triflate anions. In MeCN, the eight-membered-ring system cyclo-[Ph2SnCH2SnPh2(OH)]22+ appears to be in equilibrium with the four-membered-ring system cyclo-[Ph2SnCH2SnPh2(OH)]+. In contrast, compounds 10-15 show no ionic character. Compounds 1-15 were characterized by multinuclear NMR spectroscopy in solution and in the solid state, IR spectroscopy, conductivity measurements, electrospray mass spectrometry, osmometric molecular weight determinations, and X-ray crystallography (4, 5, 7, and 12).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ammonia dissociation is the controlling reaction for several important thermochemical heat treatment processes; nitriding, nitrocarburising (ferritic and austenitic) and carbonitriding. The fluidised bed furnace is a convenient and widely used medium for all of these treatments, yet understanding of the reaction in a fluidised bed context is minimal. This paper deals with the influence of process parameters on nitrogen activity aN; temperature, fluidising flowrate, ammonia inlet level, carbonaceous gas. Two basic behaviours were observed; inlet NH3-dependant and inlet NHr insensitive, with a transition region at intermediate temperatures. The nitrocarburising response of steel specimens was measured by optical microscopy of the layer thicknesses and glow discharge optical emission spectroscopy (GD-OES) determination of nitrogen depth-penetration profiles. aN was found by gas analysis of the exit stream ammonia with the aid of a dissociation burette.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite research findings demonstrating a relationship between dissociation and binge eating, the psychological processes that may underlie this association remain unclear. The present study examined 2 potential explanations: (a) that dissociation disinhibits behavioral control over eating and (b) that dissociation interferes with self-awareness and undermines body image. A total of 151 female university students completed measures of dissociation, body dissatisfaction, impulsivity, internalization of the thin ideal, body comparison, and binge eating. Correlations confirmed the presence of a relationship between dissociation and binge eating, and regression analyses revealed that this relationship is limited to body-specific (somatic) symptoms of dissociation. Path analyses identified body dissatisfaction, comparison, and impulsivity as significant mediators of this relationship. However, inclusion of all 3 mediated paths in a full model revealed that only body dissatisfaction is a unique mediator. The relevance of somatic symptoms, and the unique contribution of body dissatisfaction as a mediator, are consistent with an explanation of the relationship between dissociation and binge eating that is based on a vulnerability of body image. The results emphasize the need for future research to consider the relation of dissociation to a broader range of disordered eating symptoms than simply binge eating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of the rate and the mechanism of reaction is of fundamental importance in the many facets of chemistry. Electrochemical systems are further complicated by the heterogeneous boundary, between the solution and the electrode, that the electron passes through before any electrochemical reaction can take place. This thesis concerns the development of methods for analysing electrode kinetics. One part involves the further development of the Global Analysis procedure to include electrodes with a spherical geometry which are traditionally the most popular form of electrodes. Simulated data is analysed to ascertain the accuracy of the procedure and then the known artifacts of uncompensated solution resistance and charging current are added to the simulated data so that the effects can be observed. The experimental analysis of 2-methyl-2-nitropropane is undertaken and comparisons are made with the Marcus-Hush electrochemical theories concerning electrode kinetics. A related section explores procedures for the kinetic analysis of steady state voltammetric data obtained at microdisc electrodes. A method is proposed under the name of Normalised Steady State Voltammetry and is tested using data obtained from a Fast Quasi-Explicit Finite Difference simulation of diffusion to a microdisc electrode. In a second area of work using microelectrodes, the electrochemical behaviour of compounds of the general formula M(CO)3(η3 - P2P1) where M is either Cr, Mo or W and P2P' is bis(2-diphenylphosphinoethyl)phenylphosphine) is elucidated. The development of instrumentation and mathematical procedures relevant to the measurement and quantitation of these systems is also investigated. The tungsten compound represents the first examples where the 17-electronfac+ and mer+ isomers are of comparable stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated the psychological processes that underlie the relationship between dissociation and disordered eating. Although previous theories have emphasized that dissociation undermines behavioural self-control and, in turn, contributes to disordered eating, present findings indicate that dissociation may also influence disordered eating via disturbances to one's sense of identity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-particle oxide fillers including TiO2, SiO2 and Al2O3 have previously been shown to have a significant affect on the properties of both polymer and polymer gel electrolytes. In some cases, conductivity increases of one order of magnitude have been reported in crystalline PEO–base complexes. In this work, we report the effects of TiO2 and SiO2 on a poly(Li-AMPS)-based gel polyelectrolyte. Impedance spectroscopy and pfg-NMR spectroscopy indicates an increase in the number of available charge carriers with the addition of filler. An ideal amount of ceramic filler has been identified, with additional filler only saturating the system and reducing the conductivity below that of the pristine polyelectrolyte system. SEM micrographs suggest a model whereby the filler interacts readily with the sulfonate group; the surface area of the filler being an important factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To realise the battery potential of gel polyelectrolytes greater ion dissociation, ultimately leading to higher conductivities, must be achieved. Higher conductivities will result through increasing the ion-dissociating properties of the gel polyelectrolyte. The poor degree of ion dissociation arises as the active ion tends to remain in close proximity to the backbone charge. Nano-particle inorganic oxides, and zwitterionic compounds have been shown to act as dissociation enhancers in certain polyelectrolyte systems. In an attempt to further increase ion dissociation the addition of both TiO2 nano-particles and a zwitterionic compound based on 1-butylimidazolium-3-N-(butanesulphonate) were added to the gel polyelectrolyte system poly (Li-2-acrylamido-2-methyl-1-propane sulphonate-co-N,N′-dimethylacrylamide), poly(Li-AMPS-co-DMAA) to determine if a synergistic effect occurs. Two different solvents were used to determine the breadth of applicability of the additive effect. The use of both dissociators resulted in the maximum ionic conductivity being achieved at lower nano-particle concentrations when compared to an identical system without zwitterion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High conductivity in single ion conducting polymer electrolytes is still the ultimate aim for many electrochemical devices such as secondary lithium batteries. Achieving effective ion dissociation in these cases remains a challenge since the active ion tends to remain in close proximity to the backbone charge as a result of a low degree of ion dissociation. A unique aspect of this dissociation problem in polyelectrolytes is the repulsion between the backbone charges created by dissociation. One way of enhancing ion dissociation in polyelectrolyte systems is to use copolymers in which only a fraction (<20%) of the mer units are charged and where the comonomer is itself chosen to be polar and preferably to be compatible with potential solvents. We have also found that certain dissociation enhancers based on ionic liquids or boroxine ring compounds can lead to high ionic conductivity. In the cases where an ionic liquid is used as the solvent in a polyelectrolyte gel, the viscosity of the ionic liquid and its hydrophilicity are critical to achieving high conductivity. Compounds based on the dicyanamide anion appear to be very effective ionic solvents; polyelectrolyte gels incorporating such ionic liquids exhibit conductivities as high as 10−2 S/cm at room temperature. In the case of boroxine ring dissociation enhancers, gels based on poly(lithium-2-acrylamido-2-methyl-1-propanesulfonate) and ethylene carbonate produce conductivities approaching 10−3 S/cm. This paper will discuss these approaches for achieving higher conductivity in polyelectrolyte materials and suggest future directions to ensure single ion transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to dielectric spectroscopy measurements, ionic liquids (ILs) have rather modest dielectric constants that reflect contributions from distortion and electronic polarization caused by the molecular polarizability as well as the orientation polarization caused by the permanent dipole moment of the ions. To understand the relative importance of these various contributions, the electronic polarizabilities of 27 routinely used ionic liquid ions of different symmetry and size were calculated using ab initio-based methods such as HF and MP2. Using the Clausius–Mossotti equation, these polarizabilities were then used to obtain the electronic polarization contribution (εop) to the dielectric constants of six ionic liquids, [C2mim][BF4], [C2mpyr][N(CN)2], [C2mim][CF3SO3], [EtNH3][NO3], [C2mim][NTf2] and [C2mim][EtSO4]. Theoretical εop values were compared to experimental refractive indices of these ionic liquids as well as to those of traditional molecular solvents such as water, tetrahydrofuran (THF), dimethylsulfoxide (DMSO) and formamide. The dipole moments of the ions were also calculated, and from these it is shown that the molecular reorientation component of the dielectric constants of the ionic liquids consisting of ions with small or negligible dipole moments is quite small. Thus it is concluded that a contribution from a form of “ionic polarization” must be present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to combine the advantages of both traditional gel electrolytes and polyelectrolytes, a novel polyelectrolyte which incorporates a boroxine ring-containing anion-trapping agent has been explored. Poly(lithium 2-acrylamido-2-methyl-1-propanesulfonate) (PAMPSLi), ethylene carbonate (EC) and tri(methoxyethoxyethoxyethoxy)boroxine (TME3Bx) were combined to prepare various gel systems. The thermal properties and conductivities of these gels have been investigated. A conductivity of 10−3.6 S cm−1 at 20 °C has been achieved in a gel polyelectrolyte system with a molar ratio of [EC]:[TME3Bx]:[Li+]=24:1.7:1. Temperature-dependent NMR measurements indicated that a significant interaction exists between the boroxine ring and the polyelectrolyte.