2 resultados para dielectric-filled propagating waveguide

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of nano-size rutile filler on the microwave dielectric properties of PTFE composites were investigated and the results were compared with that of micron size rutile filled composites. Nano-size rutile powder was prepared through sol–gel route and the filled PTFE composites were fabricated through SMECH process. Different characterization techniques such as powder X-ray diffraction, SEM, BET, TEM and TG/DSC were employed to analyze the nature of ceramic filler. The dielectric properties of filled composites were evaluated at microwave frequency region using waveguide cavity perturbation technique. Different theoretical models have been employed to predict the variation of dielectric constant with respect to filler loading. The moisture absorption characteristics of nano-rutile filled PTFE composites were measured as per IPC-TM-650 2.6.2 standards. Composites show high dielectric constant at X-band frequency region with relatively high loss tangent compared to micron size counterpart.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(ether ether ketone) (PEEK) is a potential candidate for electronic applications due to its low permittivity, low loss, high melting point, better chemical resistance, excellent insulating properties and easy processibility. Present paper discusses the preparation and characterization of SrTiO3 filled PEEK composite for microwave substrate applications. The dielectric constant, dielectric loss and temperature variation of dielectric constant of the composites have been studied up to 1 MHz using an Impedance Analyzer. Different theoretical approaches have been employed to predict the effective permittivity of composite systems and the results are compared with that of the experimental data. The crystallinity of the bulk composite is studied by X-ray diffraction studies. Scanning electron microscopic technique has been employed to study the dispersion of the particulate filler in PEEK matrix. Vickers hardness of pure and filled PEEK composite has been measured using Microhardness Tester. The effect of particle size on the dielectric as well as mechanical properties of SrTiO3/PEEK composite system is also studied by incorporating micronsize and nanosize fillers. Present study shows that a temperature stable composite can be realized by judiciously selecting appropriate filler concentration in the PEEK matrix.