12 resultados para detritus

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Large amounts of terrestrial detritus enter many low-order forested streams, and this organic
material is often the major basal resource in the metazoan food webs of such systems. However,
despite their apparently low biomass, algae are the dominant food of organisms in a number of
aquatic communities which conventionally would have been presumed to be dependent on
allochthonous detritus, particularly those in the tropics and also in lowland intermittent streams
in arid Australia.
2. The dual stable isotope signatures (d13C and d15N) of potential primary food sources were
compared with the isotopic signatures of common aquatic animals in lowland intermittent
streams in south-eastern Australia, in both spring and summer, to determine whether
allochthonous detritus was an important nutritional resource in these systems. The isotopic
signatures of the major potential allochthonous plant food sources (Eucalyptus, Phalaris and
Juncus) overlapped, but were distinct from algae and the dominant macrophytes growing in the
study reaches. The isotopic signatures of biofilm were more spatially and temporally variable
than those of the other basal resources.
3. Despite allochthonous detritus having relatively high C : N ratios compared to other
potential basal resources, results from ISOSOURCE mixing model calculations demonstrated
that this detritus, and the associated biofilm, were the major energy sources assimilated by
macroinvertebrate primary consumers in both spring and summer. The importance of these
energy sources was also reflected in animals higher in the food web, including predatory
macroinvertebrates and fish. These resources were supplemented by autochthonous sources of
higher nutritional value (i.e. filamentous algae and macrophytes, which had relatively low
C : N ratios) when they became more prolific as the streams dried to disconnected pools in
summer.
4. The results highlight the importance of allochthonous detritus (particularly from Eucalyptus)
as a dependable energy source for benthic macroinvertebrates and fish in lowland intermittent
streams of south-eastern Australia. This contrasts with previous stable isotope studies
conducted in lowland intermittent streams in arid Australia, which have reported that the fauna
are primarily dependent on autochthonous algae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies were conducted on streams flowing through agricultural floodplains in south-eastern Australia to quantify whether reductions in riparian canopy cover were associated with alterations to the input and benthic standing stocks of coarse allochthonous detritus. Comparisons were made among three farmland reaches and three reaches within reserves with intact cover of remnant overstorey trees. Detritus inputs to these reaches were measured monthly over 2 years using litter traps. Direct inputs to streams within the reserves were relatively high (550–617 g ash free dry weight (AFDW) m–2 year–1), but were lower at farmland reaches with the lowest canopy covers (83–117 gAFDW m–2 year–1). Only a minor fraction of the total allochthonous input (<10%) entered any of the study reaches laterally. The mean amounts of benthic detritus were lowest in the most open farmland reaches. Standing stocks of benthic detritus were found to be highly patchy across a large number of agricultural streams, but were consistently very low where the streamside canopy cover was below ~35%. Canopy cover should be restored along cleared agricultural streams because allochthonous detritus is a major source of food and habitat for aquatic ecosystems. Given the absence of pristine lowland streams in south-eastern Australia, those reaches with the most intact remnant overstorey canopies should be used to guide restoration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance to food-webs of trophic cul-de-sacs, species that channel energy flow away from higher trophic levels, is seldom considered outside of the pelagic systems in which they were first identified. On intertidal mudflats, inputs of detritus from saltmarshes, macroalgae or microphytobenthos are generally regarded as a major structuring force underpinning food-webs and there has been no consideration of trophic cul-de-sacs to date. A fully orthogonal three-factor experiment manipulating the density of the abundant gastropod, Pyrazus ebeninus, detritus and macrobenthic predators on a Sydney mudflat revealed large deleterious effects of the gastropod, irrespective of detrital loading or the presence of predators. Two months after experimental manipulation, the standing-stock of microphytobenthos in plots with high (44 per m2) densities of P. ebeninus was 20% less than in plots with low (4 per m2) densities. Increasing densities of P. ebeninus from low to high halved the abundance of macroinvertebrates and the average number of species. In contrast, the addition of detritus had differing effects on microphytobenthos (positively affected) and macroinvertebrates (negatively affected). Over the two-months of our experiment, no predatory mortality of P. ebeninus was observed and high densities of P. ebeninus decreased impacts of predators on macroinvertebrate abundances. Given that the dynamics of southeast Australian mudflats are driven more by disturbance than seasonality in predators and their interactions with prey, it is likely that Pyrazus would be similarly resistant to predation and have negative effects on benthic assemblages at other times of the year, outside of our study period. Thus, in reducing microphytobenthos and the abundance and species richness of macrofauna, high abundances of the detritivore P. ebeninus may severely limit the flow of energy up the food chain to commercially-important species. This study therefore suggests that trophic cul-de-sacs are not limited to the eutrophied pelagic systems in which they were first identified, but may exist in other systems as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and function of agricultural stream reaches with sparse riparian and floodplain vegetation differ from those of forested reaches, but may be ‘reset’ as these streams flow through reaches with forested riparian zones. We investigated whether invertebrate colonisation of River Red Gum (Eucalyptus camaldulensis) leaf packs in lowland intermittent streams was influenced by the adjacent reach-scale landuse (cleared farmland or forested reserve) within an agricultural catchment in Victoria, Australia. Further, we examined the influence of seasonal changes in hydrology and associated changes in abiotic conditions on the colonisation of leaves by repeating experiments over two summers and one spring. Across these experiments, there were no consistent differences in the structure of communities that colonised leaves in farmland and reserve reaches. In both seasons, most leaf colonists were collectors and few were shredders in both farmland and reserve reaches. Relative abundances of gastropod grazers were much higher in summer than in spring. The structure of invertebrate communities colonising leaves in the different reaches converged over time when streams flowed in spring, but diverged over time as the streams dried and abiotic conditions within disconnected pools became increasingly harsh in summer. Thus, patterns of leaf pack colonisation were influenced by the regional climate causing large seasonal changes in hydrology, but not by reach-scale landuse. The large-scale disturbances of agricultural landuse across the catchment and a supra-seasonal drought probably contributed to low diversities of invertebrate communities in the streams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diets of four highly-abundant, dominant fish species within the Surrey River, a small intermittently open estuary in south-east Australia, were examined from specimens collected between July 2004 and June 2005. These four, similar-sized species (Atherinosoma microstoma, Galaxias maculatus, Philypnodon grandiceps and Pseudogobius olorum) have limited ability to spatially segregate along the length of the estuary owing to its small size relative to other estuarine habitats. All four species fed on a variety of prey items including crustaceans, insects and detritus. Despite this parity, the four species were demonstrated to occupy differing dietary niches that were concluded to be responsible for reducing interspecific feeding competition. Seasonal variations in the diets were observed for A. microstoma and Philypnodon grandiceps, with these species also exhibiting contrasting diel feeding behaviours. The closure of the estuary mouth led to the flooding of its margins, resulting in an increase in the size of the estuary and providing alternative food resources for the fish to exploit. It appears the inundation of the flood-zone facilitated further significant divergence in the diets of the fish and is likely to be of high ecological value to the estuary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

These photographs on paper are about the fragility and sense of impermanence of the world. So it goes. Some are taken from a great distance around the spaces of cities, revisiting again and again the detritus of habitation or the shape and punctuation of nature or details of figures in close-up.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The supply of detritus is an important food source for many soft-sediment invertebrates, but its importance for their growth and condition is rarely, if ever, tested directly using manipulative field experiments. Therefore, we designed such a study to: (1) test the importance of fine particulate organic matter for the growth and condition of the infaunal bivalve Soletellina alba; (2) indirectly test the feeding mode of S. alba, which has been assumed to be a deposit feeder like other members of the same superfamily (Tellinoidea); (3) compare growth rates across two summers with contrasting patterns of estuary mouth opening/closing; and (4) compare the condition of individuals used in two field studies (i.e. present versus past) and a past laboratory study. Neither growth nor condition differed when organic content of the sediments was varied, which suggests that S. alba is either a suspension feeder or capable of switching modes of feeding. There was considerable interannual variation in growth with greater growth occurring during the summer with a longer period of mouth opening. This suggests that periods of mouth closure may reduce secondary production within seasonally-closed estuaries. Potential artefacts associated with laboratory trials were also identified, with laboratory bivalves exhibiting poorer condition than those used in two field trials. The present study provides no evidence that variable quantities and qualities of organic matter within the sediments influence the growth and condition of S. alba, but future studies should focus on food supplied via the water column when the estuary is open versus closed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mundiad is a mock epic poem in heroic couplets. Modelled on structures of classical epics such as Homer's Iliad, Virgil's Aeneid and Milton's Paradise Lost, yet set in the contemporary world of globalisation, the poem celebrates the detritus of everyday life Kylie Minogue, pornography, new ageism, genetic engineering, IVF, screen culture, among many others. Reviving the ancient poetic ambition to speak differently about the things of this world, The Mundiad is startlingly original and is destined to be a cult classic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study the nutrition, growth and production of C. destructor was examined. Selected nutritional requirements of juvenile animals were determined under controlled conditions with the aim of developing a pelleted diet for use in hatcheries, nurseries and growout situations. The best developed diet was assessed for its potential as a supplementary feed for animals cultured in earthen environments. The protein requirements were first determined simultaneously with an evaluation of the effect of replacing animal protein (fishmeal) by soybean meal. Juveniles were reared communally for 59 d on isoenergetic diets containing 15-30% protein and graded levels of soybean meal (0-60%, of protein). When soybean meal was included at a level of 40-60%, growth was reduced relative to that achieved with control diets containing 15% and 20% protein, but this was not the case at a 20% soybean meal substitution level. A two-way interaction occurred between dietary protein and soybean meal content. Higher protein feeds enabled higher soybean meal inclusion levels without significantly affecting growth. Protein increases of 5% produced better growth at the 40% and 60% soybean meal substitution levels. This effect was less pronounced in the control and the 20% soybean meal diets. Carcass %protein increased and %lipid decreased as dietary protein increased. A similar effect occurred by increasing the soybean meal level to 60%. No obvious trend in carcass moisture, energy, and ash occurred. A protein requirement of 30% was apparent when fish meal and soybean meal were included in diets at levels of 20% and 24% (dry matter) respectively. Alternative protein sources to soybean meal were subsequently identified. Juveniles were maintained for 12 weeks on isoenergetic diets containing 30% protein and differing in the primary source of protein used, with meat, snail, soybean, yabby, and zooplankton meals comprising the major protein ingredient. No significant difference occurred in mean weight (MW), percentage weight gain (%WG), SGR or survival among diets. Food conversion ratios (FCR) were low, with a minimum value of 0.95 for the snail-based diet. The apparent net protein utilisation (ANPU) varied from 29.6% (zooplankton-based diet) to 41.2% (snail-based diet). Carcass composition varied with diet, with the greatest difference occurring in carapace colour. Animals fed the zooplankton-based diet developed the strongest, most natural pigmentation. A new combination of previously used protein-based ingredients was subsequently tested with reference to two yabby species, Cherax albidus and Cherax destructor, that were grown simultaneously in identical conditions. Juvenile male animals were reared individually for 20 weeks on isoenergetic diets containing 15% or 30% protein with fish meal, soybean meal, yabby meal and wheat products forming the basis of the diets. C albidus grew the fastest and utilised the food the most effectively. Carcass composition was influenced by diet with the 30% protein diet resulting in an increase in carcass protein and ash and a decrease in carcass lipid and energy relative to the low protein diet. Carcass moisture and calcium were not affected by diet. The intermoult period (IP) was highly dependent on the premoult weight (W) but the mean moult increment (WI, as weight) was independent of the PM. The orbital carapace length (OCL) and the abdominal length (ABL) %moult increments generally declined with an increase in PM whereas the propus length (PL) %moult increment generally increased. The IP, WI, %OCL, %ABL, and %PL moult increments varied according to diet and to species. Elevated dietary protein caused a reduction to the IP (for similar sized animals) by 11 d and 7 d and an increase to the WI by 85% and 81% in C. albidus and C destructor respectively. Dietary induced morphological changes also occurred. Animals of a standard OCL (both species) had significantly larger abdomens when fed the higher protein diet. Growth on the best developed diet was compared to the growth obtained on a natural diet of freshwater zooplankton. Juveniles were reared individually for 12 weeks on the two diets. The MW, %WG and SGR were higher for the zooplankton diet. Carcass composition was influenced by diet and the zooplankton fed animals had a higher carcass %protein, %lipid, %ash and %fibre content and were more richly pigmented than animals fed pellets. The IP and the WI were highly dependent on the PM and varied according to diet; feeding with zooplankton reduced the IP by 1.2 days and increased the WI by 13.7% compared to pellets. Nutrient digestibility was determined for the pelleted diets evaluated in the growth trials. Protein digestibility (PD) and dry matter digestibility (DMD), using chromic oxide (Cr2O3) as an exogenous marker, were high for all diets, at around 93% and 83% respectively. Ash digestibility varied considerably from 17% to 73% for the snail and yabby meal diets respectively. Crude fibre digestibility was around 50% and probably indicates cellulase activity. Alternative markers to Cr2O3 were evaluated. Ash was considered to be the most suitable alternative to Cr2O3, providing a reasonable, albeit lower, estimate of nutrient digestibility. Cr2O3 and ash were preferentially excreted whereas fibre was retained in the digestive system for a longer period, consequently, the collection of a particular fraction of the deposited faeces (late or early) substantially affected the digestibility coefficients. In earthen-based environments, animals fed the best developed diet were compared to animals cultured using a forage crop of clover (Trifolium repens). Three supplementary feeding strategies representing varying levels of management intensity were evaluated in a series of trials conducted in ponds and pond microcosms. Growth on pellets consistently exceeded that obtained with the forage crop, with final MW being 67-159% higher than that using clover and appeared to be the result of direct pellet consumption and from a pellet fertiliser effect (on the sediment). Within-pond DMD and PD were high and similar for each treatment (DMD = 51-58%; PD = 89-92%). In the control pond, DMD and PD increased with each successive flood. The faecal egestion rate (PER) decreased with each successive flood in all ponds, and is negatively related to animal weight and to foregut fullness (FF) according to power curves. FF was consistently lowest in the control pond. Mean FF was 48.5%, 62.3%, and 26.7% for the pellet, crop and control ponds respectively. FF increased to the third flood in each pond. The foregut protein content was high in all samples and the mean values were 33.9%, 32.7% and 35.6% for the pellet, crop and control ponds respectively. Foregut ash was highly variable within each pond and is inversely related to the foregut protein content. In the control and pellet ponds the highest foregut ash content occurred during flood 1. The culture system (aquaria or pond) strongly influenced the composition of the foregut content. The foregut of animals fed the manufactured diet (B2) in ponds contained approximately 176% more ash and 5% more protein than the foregut of animals fed in bare-bottom tanks. The FF of the tank fed animals was approximately 45% higher than the FF of pond fed animals after a similar feeding period. Base-line yields for extensive production systems appeared to be around 400kg ha-1. The supplementary addition of T. repens produced yields of approximately 635kg ha-1 (in ponds) to around 1086kg ha-1 (in tanks). The sequential addition of cut-clover to tanks stimulated growth to levels approaching those achieved on pellets. Yabbies stocked into ponds at 15-20 m-2 with a mean weight of 2.67g and fed a 30% protein pelleted diet for 100 d, resulted in a yield of approximately 1117kg ha-1, but only 2% of the population were above a marketable size of 50g. The feed utilisation indices were better for animals reared on pellets in bare-bottom tanks than in earthen environments, indicating some degree of pellet wastage when natural feeds are simultaneously present. High apparent food conversion ratios and low protein efficiency ratios occurred when the forage crop was provided. A considerable quantity of the dry matter and protein content of the forage crop was either inefficiently utilised or directed into other production pathways. Sowing a forage crop into pond microcosms to which a pelleted diet was also provided, did not enhance growth performance. Pelleted feed inputs at a rate of approximately 129g m-2 to 198g m-2 (dry matter) and 38g -2 to 64g m-2 (protein) over 70-100 d resulted in acceptable growth and feed utilisation indices for animals reared in ponds and pond microcosms. Forage crop inputs of approximately 533g m-2 to 680g m-2 (as dry matter) or 84g m-2 to 177g m-2 (as protein) over a 70-100 d period produced reasonable growth rates but poor feed utilisation indices. Low inputs of dry matter (from 113-296g m-2) and protein (from 24-54g m-2) from clover were sufficient to maintain high growth rates in pond microcosms for around 28 d. In ponds, a very low level of 21g m-2 (dry matter) and 4.3g m-2 (protein) was sufficient for around 3 weeks. Forage depletion appeared to occur beyond week 3-4 and was probably a major growth limiting factor. The mean hepatosomatic index (HSI) was 9.44, 7.68, and 6.79 for the pellet, crop, and control ponds respectively. The relationship between hepatopancreas weight and overall animal weight was significantly different between treatments. The hepatopancreas of pellet-fed animals had the highest %lipid and lowest %ash, %protein, %carbohydrate and %moisture content. In terms of absolute quantities, the only major difference in hepatopancreas composition between treatments occurred for lipid and dry matter content. The hepatopancreas of the pellet-fed animals was a cream/cream-yellow colour and was very fragile, whereas in the other ponds it was a more ‘natural’ bright yellow colour and was structurally more robust. C. destructor has a capacious foregut, being approximately 5 times the volume of similar sized Penaeids. The foregut volume (V, ml) of the yabby is related to animal weight (W, g) according to V = 0.048 W0.9543. Animals that were starved for 96 h and then fed diet B2 were almost completely foil after 30 min. The ‘apparent enzymatic response’ of animals fed various natural and artificial diets in tanks was evaluated. Nutrient processing time and the enzymatic response following ingestion appeared to be regulated by the chemical and physical properties of the diet. For the natural feeds, foregut protein was 1.2% higher (for zooplankton) and up to 300% higher (for detritus) than dietary protein, whereas ash was 7.5% higher (zooplankton) and 46-63% lower (detritus) than dietary ash. For animals fed diet B2 after 48 h without food, FF was approximately half that of 96 h starved animals after a similar feeding period but foregut protein and ash contents were similar. Finally, the physiological and morphological attributes elucidated in this study are discussed with reference to the ecology of the yabby. High growth rates, excellent feed utilisation indices and high digestibility coefficients for a wide range of diet-types illustrate nutritional flexibility. A capacious foregut, a large hepatopancreas with a high energy storage capacity, the ability to partition and preferentially excrete the low nutrient value inorganic component of the diet, the capacity to alter body form, nutrient processing time and enzymatic secretions in relation to diet-type, and modified behaviour according to feed availability also demonstrate plasticity/adaptability/flexibility. The combined effect of these important characteristics ensures survival in environments that may be adverse and highly variable in terms of nutrient availability. Collectively the morphological and digestive traits elucidated in this study reflect the generalist-type nature of C destructor and indicate that a polytrophic classification still seems appropriate. Several priority areas for further nutrition research are identified and recommendations are made regarding the best-practices to use in the commercial culture of the yabby. Of paramount importance is the further clarification of the nutritional requirements and feeding preferences of animals in various phases of development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many temperate estuaries have intermittently open and closed mouths, a feature that is often related to intermittent freshwater input. These systems, often overlooked due to their small size, can have large hydrological variability over medium-term time scales.

This variability presents potential difficulties for estuarine species particularly where anthropogenic alterations to freshwater flows can cause large deviations from natural patterns of tidal influence and inundation of habitat.

Influences of natural and hydrological variability on seagrasses were examined in two central Victorian estuaries with anthropogenically-modified but naturally-intermittent freshwater flows and mouth openings. Comparisons were focused on differences between an estuary with artificially-augmented freshwater inflow and an adjacent system, in which the volume and timing of inflows were altered by a reservoir. Eight additional estuaries in the region were also used to provide a context for these two main sites.

Hydrological changes during the three-year field component were affected by the ending of a drought and then a major flood a year later as well as by ongoing anthropogenic flow reduction and augmentation. These influences on hydrology were associated with an initially high seagrass coverage that was substantially reduced and showed signs of recovery only in the system that was affected by lower inflows. Such influences and responses also changed seasonally but to a much lesser extent than the responses to stochastic climatic events.

Natural flows were intermittent and varied substantially between years. Flooding flows represented up to 89% of the long-term annual average flow. Water quality was broadly typical of the region, with the exception of low pH in some tributaries, especially those of Anglesea estuary. Anthropogenic changes to flow were most evident at times of low natural flows and resulted in longer and more frequent periods of zero inflow to Painkalac estuary and a continual base flow to Anglesea. This base flow, from ponds containing coal ash, neutralised waters flowing from upstream and increased conductivity, except at times of high natural flow.

A three-state conceptual model of the magnitude and variability of water levels, based largely on the degree of tidal influence was identified and quantitatively assessed for the two estuaries that were the main focus of the study. These states in turn had a large influence on the area and inundation of benthic habitat. Floods tended to open the mouths of estuaries, which then remained tidal given sufficient flow to overcome sedimentary processes at the mouths. Low and zero inflow was a precondition for closure of the mouths of the estuaries. When closed, differences in inflow resulted in different endpoints in salinity patterns. From an initial pattern similar to a classic ‘salt wedge’, Painkalac estuary, with reduced inflow, quickly destratified and gradually became more saline, at times hypersaline. Anglesea estuary, with augmented flow, tended to remain stratified for longer until becoming completely fresh, given a long enough period of closure.

Episodic changes in the water quality of the estuaries were associated with different components of the freshwater flow regimes. At high flows, fresh waters of low pH with a high metal load entered Anglesea estuary. Except during the largest flood, when the estuary was completely flushed, this water was neutralised at the halocline and resulting in precipitation of metals. High flows into Painkalac were associated with elevated concentrations of clay-sourced suspended solids. During a closed period, with zero flow, a release of sediment-bound nutrients triggered by anoxia was observed in Painkalac, followed by an algal bloom.

The large decline in seagrass extent that was observed in both estuaries was closely related to floods and the subsequent reductions in potential habitat associated with the tidal states that followed. Analysis of historical patterns of extent against rainfall records suggested that periods of drought and extended mouth closures were related to establishment and expansion of beds. This model was similar to that described for South African estuaries and contrasted with more-seasonal patterns reported for local marine embayments.

Rates of in situ decomposition of seagrass detritus showed a mix of seasonal and disturbance-driven patterns of change, depending on estuary. Variability of these rates on a scale of 100s of metres was typically not significant, but there were a few episodes that were highly significant. A negative correlation between decomposition rate and seagrass extent was also observed. A novel technique for assessing cellulose decomposition potential in sediment, adapted from soil science, proved to be a useful tool for estuarine research. Results from this component of the study highlighted both small-scale variability that was inconsistent through time, and also stable differences in decomposition potential between depths and estuaries that were consistent with differences in hydrological state and salinity.

Given the relative lack of knowledge about processes in intermittent estuaries, particularly those relating to changes in freshwater inflow, results from this study will be of value both locally and for similar systems elsewhere. Locally, it is likely that flow regimes to both Anglesea and Painkalac estuaries will be reduced, following closure of the mine power station at Anglesea and due to increased demand from the reservoir above Painkalac. There is potential to manage flows from each of these sources to minimise downstream effects. Regionally, and globally, there are many intermittent estuaries in areas with Mediterranean-type climates. It has been predicted that the climates of these regions will become drier but with an increase in intensity of storm events, both of which have ramifications for flow regimes to estuaries. It is hoped that results of this study will contribute to more informed management of intermittent estuaries in the context of these likely changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human activities in coastal areas frequently cause loss of benthic macrophytes (e.g. seagrasses) and concomitant increases in microalgal production through eutrophication. Whether such changes translate into shifts in the composition of sediment detritus is largely unknown, yet such changes could impact the role these ecosystems play in sequestrating CO 2. We reconstructed the sedimentary records of cores taken from two sites within Botany Bay, Sydney - the site of European settlement of Australia - to look for human-induced changes in dominant sources of detritus in this estuary. Cores covered a period from the present day back to the middle Holocene (~6000 years) according to 210Pb profiles and radiocarbon ( 14C) dating. Depositional histories at both sites could not be characterized by a linear sedimentation rate; sedimentation rates in the last 30-50 years were considerably higher than during the rest of the Holocene. C : N ratios declined and began to exhibit a microalgal source signature from around the time of European settlement, which could be explained by increased nutrient flows into the Bay caused by anthropogenic activity. Analysis of stable isotopic ratios of 12C/ 13C showed that the relative contribution of seagrass and C 3 terrestrial plants (mangroves, saltmarsh) to detritus declined around the time of rapid industrial expansion (~1950s), coinciding with an increase in the contribution of microalgal sources. We conclude that the relative contribution of microalgae to detritus has increased within Botany Bay, and that this shift is the sign of increased industrialization and concomitant eutrophication. Given the lower carbon burial efficiencies of microalgae (~0.1%) relative to seagrasses and C 3 terrestrial plants (up to 10%), such changes represent a substantial weakening of the carbon sink potential of Botany Bay - this occurrence is likely to be common to human-impacted estuaries, and has consequences for the role these systems play in helping to mitigate climate change. © 2011 Blackwell Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macroalgal communities in Australia and around the world store vast quantities of carbon in their living biomass, but their prevalence of growing on hard substrata means that they have limited capacity to act as long-term carbon sinks. Unlike other coastal blue carbon habitats such as seagrasses, saltmarshes and mangroves, they do not develop their own organic-rich sediments, but may instead act as a rich carbon source and make significant contributions in the form of detritus to sedimentary habitats by acting as a “carbon donor” to “receiver sites” where organic material accumulates. The potential for storage of this donated carbon however, is dependent on the decay rate during transport and the burial efficiency at receiver sites. To better understand the potential contribution of macroalgal communities to coastal blue carbon budgets, a comprehensive literature search was conducted using key words, including carbon sequestration, macroalgal distribution, abundance and productivity to provide an estimation of the total amount of carbon stored in temperate Australian macroalgae. Our most conservative calculations estimate 109.9 Tg C is stored in living macroalgal biomass of temperate Australia, using a coastal area covering 249,697 km2. Estimates derived for tropical and subtropical regions contributed an additional 23.2 Tg C. By extending the search to include global studies we provide a broader context and rationale for the study, contributing to the global aspects of the review. In addition, we discuss the potential role of calcium carbonate-containing macroalgae, consider the dynamic nature of macroalgal populations in the context of climate change, and identify the knowledge gaps that once addressed will enable robust quantification of macroalgae in marine biogeochemical cycling of carbon. We conclude that macroalgal communities have the potential to make ecologically meaningful contributions toward global blue carbon sequestration, as donors, but given that the fate of detached macroalgal biomass remains unclear, further research is needed to quantify this contribution.