86 resultados para deformation microstructure

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of structure during the hot working of an austenitic Ni-30%Fe alloy is studied using EBSD analysis of samples tested in torsion. A microstructural map in temperature-strain space that plots grain size, cell size, fracture and dynamic recrystallization is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work was aimed at a detailed investigation of the orientation dependence of the microstructure characteristics in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 1198 K (925 °C) at a strain rate of 1 s−1 to several strain levels up to 1.0. The quantification of the substructure evolution as a function of strain was performed for the stable 〈011〉 oriented grains. Other grain orientations were also investigated in detail at a strain of 0.2. The 〈110〉 oriented grains contained self-screening arrays of “microbands” (MBs) aligned with high Schmid factor {111} slip planes. The MB crystallographic alignment was largely maintained up to a strain of 1.0, which suggests that the corresponding boundaries kept continuously rearranging themselves during straining and did not follow the sample shape change. The mean MB spacing decreased and misorientation angle increased with strain towards saturation, indicating the operation of the “repolygonization” dynamic recovery mechanism. The non-〈011〉 oriented grains displayed a strong tendency to split during deformation into deformation bands having alternating orientations and being mutually rotated by large angles. The bands were separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present paper an effect of severe plastic deformation (SPD) on the microstructural evolution and properties of a plain C-Mn steel was investigated. The SPD was accomplished by the MaxStrain system which deforms material along two perpendicular axes while the deformation along the third axis is fully constrained. The applied amounts of true strains were 5 and 20 in total. Deformation was conducted at room and 500°C temperatures. Some samples deformed at room temperature were subsequently annealed at 500°C. A microstructural analysis by SEM/EBSD was used for recognition the low- and high-angle grain boundaries. It was found that the collective effect of severe plastic deformation (true strain of 20) and further annealing promotes the formation of high-angle grain boundaries and uniform fine grained microstructure. The refinement of ferrite microstructure results in a significant increase in strength and hardness.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of grain size on the deformation behaviour in the fenite region of a Titanium stabilized Interstitial Free steel was investigated by hot torsion. The initial work hardening regime is followed by a softening regime where a broad peak stress develops. The peak stress and the stress at final strain were relatively insensitive to grain size. However, at low values of the Zener-Hollomon parameter, the strain to the peak stress was strongly dependent on the grain size. A series of microstructural parameters were examined to explain these observations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The data is the result of hot deformation tests conducted on magnesium alloy AZ31. It includes stress strain data for a range of deformation conditions and different initial microstructures. It also includes data for the developed grain size and the degree of dynamic recrystallisation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The microstructure evolution and softening processes occurring in 22Cr-19Ni-3Mo austenitic and 21Cr-10Ni-3Mo duplex stainless steels deformed in torsion at 900 and 1200 °C were studied in the present work. Austenite was observed to soften in both steels via dynamic recovery (DRV) and dynamic recrystallisation (DRX) for the low and high deformation temperatures, respectively. At 900 °C, an "organised", self-screening austenite deformation substructure largely comprising microbands, locally accompanied by micro-shear bands, was formed. By contrast, a "random", accommodating austenite deformation substructure composed of equiaxed subgrains formed at 1200 °C. In the single-phase steel, DRX of austenite largely occurred through straininduced grain boundary migration accompanied by (multiple) twinning. In the duplex steel, this softening mechanism was complemented by the formation of DRX grains through subgrain growth in the austenite/ferrite interface regions and by large-scale subgrain coalescence. At 900 °C, the duplex steel displayed limited stress-assisted phase transformations between austenite and ferrite, characterised by the dissolution of the primary austenite, formation of Widmanstätten secondary austenite and gradual globularisation of the transformed regions with strain. The softening process within ferrite was classified as "extended DRV", characterised by a continuous increase in misorientations across the sub-boundaries with strain, for both deformation temperatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The microstructure of transformation induced plasticity (TRIP) and dual phase (DP) multiphase steels after stamping of an industrial component at different strain levels was investigated using transmission electron microscopy. The TRIP steel microstructure showed a more complex dislocation substructure of ferrite at different strain levels than DP steel. The deformation microstructure of the stamped parts was compared to the deformation microstructure in these complex steels for different "equivalent" tensile strains. It was found that the microstructures are similar only at high levels of strain (>10 pct) for both steels. © 2014 The Minerals, Metals & Materials Society and ASM International.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of ultrafine grained microstructures in steels has received considerable attention in recent times. In many cases the aim is to produce high strength structural steels with minimal alloying. It is well established that for an equiaxed ferrite with a uniform dispersion of second phase, both the strength and toughness will be markedly improved if the grain size can be reduced to 1-2 μm, from the typical range of 5-10 μm. Means of achieving this through dynamic strain induced transformation are examined here, following a brief overview of some of the key issues encountered when attempting to refine the austenite in existing mill configurations. A number of deformation microstructure maps are developed to aid the discussion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of physically-based models of microstructural evolution during hot deformation of metallic materials requires knowledge of the grain/subgrain structure and crystallographic texture characteristics over a range of processing conditions. A Fe-30wt%Ni based alloy, retaining a stable austenitic structure at room temperature, was used for modelling the development of austenite microstructure during hot deformation of conventional carbon-manganese steels. A series of plane strain compression tests was carried out at a temperature of 950 °C and strain rates of 10 s-1 and 0.1 s-1 to several strain levels. Evolution of the grain/subgrain structure and crystallographic texture was characterised in detail using quantitative light microscopy and highresolution electron backscatter diffraction. Crystallographic texture characteristics were determined separately for the observed deformed and recrystallised grains. The subgrain geometry and dimensions together with the misorientation vectors across sub-boundaries were quantified in detail across large sample areas and the orientation dependence of these characteristics was determined. Formation mechanisms of the recrystallised grains were established in relation to the deformation microstructure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work examines the microstructure and texture evolution in a Ni-30wt.%Fe austenitic model alloy deformed in torsion at 1000 °C, with a particular emphasis on the orientation dependence of the substructure characteristics within the deformed original grains. Texture of these grains was principally consistent with that expected for simple shear and comprised the main A, B and C components. The deformation substructure within the main texture component grains was characterised by "organised" arrays of parallel microbands with systematically alternating misorientations, locally accompanied by micro-shear bands within the C grains. With increasing strain, the mean subgrain size gradually decreased and the mean misorientation angle concurrently increased towards the saturation. The stored deformation energy within the main texture component grains was principally consistent with the respective Taylor factor values. The microband boundaries corresponded to the expected single slip {111} plane for the A oriented grains while these boundaries for the C oriented grains represented a variety of planes even for a single grain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 2D cellular automation approach was used to simulate microstructure evolution during and after hot deformation. Initial properties of the microstructure and dislocation density were used as input data to the cellular automation model. The flow curve and final grain size were the output data for the dynamic recrystallization simulation, and softening kinetics curves were the output data of static and metadynamic recrystallization simulations. The model proposed in this work considered the effect of thermomechanical parameters (e.g., temperature and strain rate) on the nucleation and growth kinetics during dynamic recrystallization. The dynamic recrystallized microstructures at different strains, temperatures, and strain rates were used as input data for static and metadynamic recrystallization simulations. It was shown that the cellular automation approach can model the final microstructure and flow curve successfully in dynamic recrystallization conditions. The postdeformation simulation results showed that the time for 50% recrystallization decreases with increasing strain for a given initial grain size and that dynamic recrystallization slows the postdeformation recrystallization kinetics compared to a model without dynamic recrystallization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Development of a digital material representation (DMR) model of dual phase steel is presented within the paper. Subsequent stages involving generation of a reliable representation of microstructure morphology, assignment of material properties to component phases and incorporation of the model into the commercial finite element software are described within the paper. Different approaches used to recreate dual phase morphology in a digital manner are critically assessed. However, particular attention is placed on innovative identification of phase properties at the micro scale by using micro-pillar compression tests. The developed DMR model is finally applied to model influence of micro scale features on failure initiation and propagation under loading conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microstructure evolution of martensitic Ti-6Al-4V alloy was investigated through uniaxial hot compression at 700°C and a strain rate of 10-3 s-1. A combination of scanning electron microscopy observation in conjunction with high resolution electron back scattered diffraction (EBSD) was used to characterize the microstructure in detail. The development of the microstructure displayed continuous fragmentation of martensitic laths with increasing strain (i.e. continuous dynamic recrystallization), concurrently with decomposition of supersaturated martensite resulting in the formation of equiaxed grains. At a strain of 0.8, an ultrafine equiaxed grained structure with mostly high angle grain boundaries was successfully obtained. The current work proposes a novel approach to produce equiaxed ultrafine grains in a Ti-6Al-4V alloy through thermomechanical processing of a martensitic starting microstructure. © (2014) Trans Tech Publications, Switzerland.