7 resultados para deep-sea channel

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of total, filterable and DGT-labile concentrations of nine metals (Al, Cd, Cr, Cu, Fe, Pb, Mn, Ni and Zn) have been made at five sites up to 4.2km from a deep sea tailings outfall operated by Lihir Gold Ltd. at Lihir Island, Papua New Guinea. At each site, pairs of DGT units (one containing a 0.4mm and the other a 0.8mm diffusive gel layer) were deployed at three depths (50–70; 105–130; 135–155m) for 4–7 days. Comparison of predicted water column DGT-labile metal concentrations in field deployments showed the 0.8mm DGT units were relatively enriched in metals, with the effect being greatest closer to the outfall for Pb and Mn and least for Fe, Cr, Ni and Zn. The most likely explanation for this is that in addition to simple ion diffusion, kinetic factors associated with ageing or desorption processes govern release of metals from iron and aluminium oxyhydroxide colloids which diffuse through the gels. The thicker gels have a longer residence time over which metals can be released for adsorption. This model explains why enrichment is most pronounced near the outfall; more distant sites have lower colloid concentrations because of the longer time for coagulation to increase particle sizes to the extent they cannot enter the gels. Total and filterable metal (FM) concentrations were frequently below the limits of detection (LOD) achievable by conventional ICP-AES (1–52gL−1) and this limited their usefulness for assessing environmental risk and for metal speciation determination. Because of its pre-concentration step DGT gave metal concentrations above their LODs and these decreased exponentially with distance from the outfall. Concentrations of DGT–labile metal fell below Australian water quality guidelines for protection of 99% of marine organisms within 0.13km of the outfall for Cd, Cr and Ni and below that for protection of 95% of marine organisms within 0.4, 0.7 and 3.6km for lead, zinc and copper, respectively.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Work exploring the way the figure is effected by time and desires

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a peak in the global number of offshore oil rigs requiring decommissioning approaches, there is growing pressure for the implementation of a "rigs-to-reefs" program in the deep sea, whereby obsolete rigs are converted into artificial reefs. Such decommissioned rigs could enhance biological productivity, improve ecological connectivity, and facilitate conservation/restoration of deep-sea benthos (eg cold-water corals) by restricting access to fishing trawlers. Preliminary evidence indicates that decommissioned rigs in shallower waters can also help rebuild declining fish stocks. Conversely, potential negative impacts include physical damage to existing benthic habitats within the "drop zone", undesired changes in marine food webs, facilitation of the spread of invasive species, and release of contaminants as rigs corrode. We discuss key areas for future research and suggest alternatives to offset or minimize negative impacts. Overall, a rigs-to-reefs program may be a valid option for deep-sea benthic conservation. © The Ecological Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An ichnoassemblage of 10 ichnospecies is described for the first time from the Late Silurian Melbourne Formation at Studley Park, Victoria, southeastern Australia. The ichnofauna is preserved in a typical deep-water turbidite succession of alternating thin- to thick-bedded sandstone and thin- to medium-bedded mudrocks. Trace fossils observed within the study site have been assigned to three main ichnofacies. Ichnofacies 1 is best developed on the linguoid-rippled upper surface of thin sandstone beds and includes Laevicyclus, Aulichnites, Nereites, Helminthoidichnites, small Chondrites and possible Zoophycos. Ichnofacies 2 is very similar to Ichnofacies 1 in ichnospecies composition but instead contains large forms of Chondrites together with other thin burrow types usually poorly preserved and in very low abundance compared with Ichnofacies 1. Ichnofacies 3 is preserved mainly as casts on the underside of medium- to thick-bedded turbiditic sandstones, and has a very low diversity, with Planolites being the most common trace. A detailed analysis of the ichnofabrics and tiering structures of these ichnofacies suggest that Ichnofacies 1 and 3 represent "simple tiering’, in contrast to Ichnofacies 2, which is more characteristic of 'complex tiering’. Despite the differences in ichnospecies composition and ichnofabrics between the three recognized ichnofacies, the collective ichnoassemblage from the study site can be assigned confidently to the Nereites ichnofacies and is, therefore, interpreted to have formed in a distal submarine fan environment of lower bathyal to abyssal depth. Further, it is possible to recognize two main subenvironments within this deep-sea setting to account for the differences between the ichnofacies. Ichnofacies 1 and 2 are interpreted to represent a typical Nereites ichnofacies located on a level basin floor subenvironment of relatively low energy conditions at the distal end of a submarine fan deposit. In comparison, Ichnofacies 3 is dominated by Planolites with rare other facies-crossing trace fossil forms, and lacks Nereites. It is, therefore, best interpreted as representing a relatively high-energy environment, possibly a distributary channel near the distal end of the submarine fan system.