44 resultados para cracking catalitico, biocombustibili, H-ZSM5, alghe, pirolisi

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die cracking and metal blowout have been identified as problems in production of the structural sump, a high pressure die cast aluminium part, at Ford's Geelong manufacturing plant. Visual inspection, thermography and strain measurements have been performed and results are consistent with the view that cracking and blowout are caused by excessive stresses and deflections, respectively, generated by bending of the sliding cores. Models are being developed for finite element simulation of the stresses and deflections in the die during production, with a view to eliminating the aforementioned problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cracking it Open puts the spotlight on improvisation with live performances by some of Melbourne's leading improvisation artists. Each artist presents a short performance, and then opens the floor for discussion with audience members.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated the cracking and distortion of water jackets in engine blocks. The Taguchi method was utilized to improve production process and in doing so, reducing the scrap of water jacket cores by over 60%. Further, by altering core material and pouring temperature, casting distortion was improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main consideration in recovering the macadamia kernal is to crack the spherical nutshell without damaging the kernal. Five mechanical cracking tools were tested, and the fracture mechanisms of nutshells, under various cracking loads, were studied. A classical theoretical approach and a numerical method were both used to investigate the influence of crack face closure on the stress intensity factor for a cracked spherical shell subjected to membrane forces and bending moments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypersensitivity to the chicken egg is a widespread disorder mainly affecting 1-2% of children worldwide. It is the second most common food allergy in children, next to cow's milk allergy. Egg allergy is mainly caused by hypersensitivity to four allergens found in the egg white; ovomucoid, ovalbumin, ovotransferrin and lysozyme. However, some research suggests the involvement of allergens exclusively found in the egg yolk such as chicken serum albumin and YGP42, which may play a crucial role in the overall reaction. In egg allergic individuals, these allergens cause conditions such as itching, atopic dermatitis, bronchial asthma, vomiting, rhinitis, conjunctivitis, laryngeal oedema and chronic urticaria, and anaphylaxis. Currently there is no permanent cure for egg allergy. Upon positive diagnosis for egg allergy, strict dietary avoidance of eggs and products containing traces of eggs is the most effective way of avoiding future hypersensitivity reactions. However, it is difficult to fully avoid eggs since they are found in a range of processed food products. An understanding of the mechanisms of allergic reactions, egg allergens and their prevalence, egg allergy diagnosis and current treatment strategies are important for future studies. This review addresses these topics and discusses both egg white and egg yolk allergy as a whole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex architecture of many fibre-reinforced composites makes the generation of finite element meshes a labour-intensive process. The embedded element method, which allows the matrix and fibre reinforcement to be meshed separately, offers a computationally efficient approach to reduce the time and cost of meshing. In this paper we present a new approach of introducing cohesive elements into the matrix domain to enable the prediction of matrix cracking using the embedded element method. To validate this approach, experiments were carried out using a modified Double Cantilever Beam with ply drops, with the results being compared with model predictions. Crack deflection was observed at the ply drop region, due to the differences in stiffness, strength and toughness at the bi-material interface. The new modelling technique yields accurate predictions of the failure process in composites, including fracture loads and crack deflection path.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper theoretically and systematically investigates: (1) the effect of local transformed strains within deformation twinning on twin intersection; (2) the fracture mode based on type I co-zone tensile twin intersection in coarse-grained magnesium alloys, as well as the impacts of twin intersection and grain diameter on interfacial crack nucleation along twin boundaries; and (3) the influence of the local stresses arising from the encountered twin bands on crack growth. A novel dislocation-based strain nucleus model and a Green's function method, which are applicable to any material with local transformations in which elastic properties are reasonably approximated as isotropic, are specifically employed to model the concentrated transformed strain and calculate the local stress field resulting from deformation twinning and the stress intensity factors at crack tips in the magnesium alloys, respectively. In addition, an electron backscatter diffraction (EBSD) measurement is provided for crack nucleation originating from Type I co-zone tensile twin intersection. The theoretical modeling indicates: (i) the local strains within barrier twins strongly dictate the growth of incident twins and enhance the twin propagation stress; (ii) larger grains favor brittle fracture. More specifically, the dislocation reactions and pile-ups at the junctions between tensile twins can result in interfacial crack nucleation and growth along the twin boundaries, which is a brittle fracture mode based on lower twinning stress and stress concentration in the coarse-grained magnesium alloys; and (iii) the direction of crack propagation is easily changed by high-density twin bands and twin intersections owing to the local strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presented is an examination of residential building faults in the Australian Slate of Victoria. The aim is to determine the interconnections between identified main house faults., with a view to establishing their cause· effect relationships. A total of 42753 residential houses in Victoria were examined for nine key faults fully documented in Archicentre's database. These faults are: rising damp. framing fault, illegal building, stump fault, timber rot, cracking, electrical fault, roof fault and water supply issue. Second to framing fault, roof fault was found to be closely associated with other house faults examined. Hence, this paper concludes that a properly framed and roofed house could limit most of these faults. As illegal building was observed to have only a little overall association with other house faults, this study has implications for the Australia Productivity Commission's on-going efforts to deregulate various aspects of the building and construction industry professions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental investigation of coir mesh reinforced mortar (CMRM) is conducted using nonwoven coir mesh matting. The main parameters in this study are the fiber volume fraction (number of mesh layers) and fiber surface treatment with a wetting agent. The composites are subjected to the four-point bending test. The short-term mechanical properties of CMRM are discussed. Scanning electron micrograph analysis is used to observe the fiber—matrix interfacial characteristics. The results indicate that the addition of coir mesh to mortar significantly improves the composite post-cracking flexural stress, toughness, ductility, and toughness index, compared to plain mortar materials. The Albatex © FFC wetting agent (2-ethylhexanol) can effectively improve water absorption of coir fiber and enhance the fiber—matrix bonding strength. These coir mesh reinforced composites may be useful in civil engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser shock peening (LSP) is an innovative surface treatment method that can result in significant improvement in the fatigue life of many metallic components. The process produces very little or no surface profile modification while producing a considerably deeper compressive residual stress layer than traditional shot peening operations. The work discussed here was designed to: (a) quantify the fatigue life improvement achieved by LSP in a typical high strength aircraft aluminium alloy and (b) identify any technological risks associated with its use. It is shown that when LSP conditions are optimal for the material and specimen configuration, a —three to four times increase in fatigue life over the as-machined specimens could be achieved for a representative fighter aircraft loading spectrum when applied at a representative load level. However, if the process parameters are not optimal for the material investigated here, fatigue lives of LSP treated specimens may be reduced instead of increased due to the occurrence of internal cracking. This paper details the effect of laser power density on fatigue life of 7050-T7451 aluminium alloy by experimental and numerical analysis.