37 resultados para computational fluid dynamics (CFD)

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ongoing advances in computational performance and numerics have led to computational fluid dynamics (CFD) becoming a ubiquitous modelling tool. However, CFD methods have only been adopted to simulate pressure-driven membrane filtration systems relatively recently. This paper reviews various approaches to describing the behaviour of these systems using CFD, beginning with the hydrodynamics of membrane channels, including discussion of laminar, turbulent, and transition flow regimes, with reference to the effects of osmotic pressure, concentration polarisation, and cake formation. The use of CFD in describing mass transfer through the membrane itself is then discussed, followed by some concluding comments on commercial membrane simulation packages and future research directions in membrane CFD. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality of high pressure die castings is a function of many interdependent parameters. It has been observed that many defects detected in the HPDC castings can be tracked back to poor die temperature distribution in the critical areas. It has therefore been recommended that the development of a technique to directly control the critical features - making them less sensitive to thermal related parameters - be very beneficial to the HPDC industry. From the information obtained from thermal image (processing), computational fluid dynamics has been applied to design the layout of internal cooling system and assign the flow conditions such as flow rate and pressure of the cooling water. it is observed that CFD prediction provides an excellent insight into the thermal balance of the high pressure die casting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quenching of a metal component with a channel section in a water tank is numerically simulated. Computational fluid dynamics (CFD) is used to model the multiphase flow and the heat transfer in film boiling, nucleate boiling and convective cooling processes to calculate the difference in heat transfer rate around the component and then combining with the thermal simulation and structure analysis of the component to study the effect of heat transfer rate on the distortion of the U-channel component. A model is also established to calculate the residual stress produced by quenching. The coupling fluid-thermal-structural simulation provides an insight into the deformation of the component and can be used to perform parameter analysis to reduce the distortion of the component. © 2011 Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the gas–solid system plays a significant role in many industrial processes. It is a complex physical and chemical process, generally consisting of heat transfer, mass transfer, species diffusion, and chemical reactions. In this paper, the reaction of methane with air at a low air factor and the gas flow in a fluidized bed with 0.1 mm solid particles are computationally simulated to enable the study of the effect of the inert particles on the species diffusion and the chemical reactions. The reaction of methane and air is modeled by a two-step reaction mechanism that produces a continuous fluid phase composed of six gases (CH4, CO, O2, CO2, H2O, and N2) and discrete solid particles in the reactor. The simulation results are compared with experiment and show that the finite rate model and the eddy dissipation model can well describe the reactions of gases in high-density gas–solid systems. The distribution of each gas and the particle behaviors are analyzed for incomplete combustion at different concentrations of loaded solid particles. The inert particles change the reactions by enhancing both the chemical kinetics and the species diffusion dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the urban heat island effect in Singapore and examines the key factors causing this effect. The possibilities of improving heat extraction rate by optimizing air flow in selected hot spots were explored. The effect of building geometry, façade materials and the location of air-conditioning condensers on the outdoor air temperature was explored using computational fluid dynamics (CFD) simulations. It was found that at very low wind speeds, the effect of façade materials and their colours was very significant and the temperature at the middle of a narrow canyon increased up to 2.5 °C with the façade material having lower albedo. It was also found that strategically placing a few high-rise towers will enhance the air flow inside the canyon thereby reducing the air temperature. Adopting an optimum H/W ratio for the canyons increased the velocity by up to 35% and reduced the corresponding temperature by up to 0.7 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Use of high reflectance surfaces reduces the amount of solar radiation absorbed through building envelopes and urban structures and thus keeping their surfaces cooler. The cooling energy savings by using high reflectance surfaces have been well documented. Higher surface temperatures add to increasing the ambient temperature as convection intensity is higher. Such temperature increase has significant impacts on the air conditioning energy utilization in hot climates. This study makes use of numerical simulations to analyze the effect of commonly used building materials on the air temperature. A part of the existing CBD (Central Business District) area of Singapore was selected for the study. A series of Computational Fluid Dynamics (CFD) simulations have been carried out using the software CFX-5.6. It was found that at low wind speeds, the effect of materials on the air temperature was significant and the temperature at the middle of a narrow canyon increased up to 2.5[degrees]C with the facade material having lower reflectance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological fluids such as blood, proteins and DNA solutiosn moving within fluidic channels can potentially be exposed to high level of shear, extension or mixed stress, either in vitro such as industrial processing of blood products or in vivo such as ocurrs in some pathological conditions. This exposure to a high level of strain can trigger some reactions. In most of the cases the nature of the flow is mixed with shear and extensional components. The ability ot isolate the effects of each component is critical in order to understand the mechanisms behind the reactions and potentially prevent them. Applying hydrodynamic flow focusing, we present in this investigation the characterization of microchannels that allow study of the regions of high shear or high extension strain rate. Micro channels were fabricated in polydimethyl siloxane (PDMS)  using standard soft-lithography techniques with a photolithographically patterned mold. Characterization of the regions with high shear and high extension strain rate is presented. Computational Fluid Dynamics (CFD) simulations in three dimensions have been carried out to gain more detailed local flow information, and the results have been validated experimentally. A comparison between the numerical models and experiment and is presented. The advantages of microfluidic flow focusing in the study  of the effects of shear and extension strain rates for biological fluids are outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a three-dimensional (3D) computational fluid dynamic simulation of a biomimetic robot fish. Fluent and user-defined function (UDF) is used to define the movement of the robot fish and the Dynamic Mesh is used to mimic the fish swimming in water. Hydrodynamic analysis is done in this paper too. The aim of this study is to get comparative data about hydrodynamic properties of those guidelines to improve the design, remote control and flexibility of the underwater robot fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been an increasing demand for sports facilities in urban areas recently. As a result of this, more attention is drawn towards not only the energy performance of these building typologies, but also creating a healthy indoor environment for the users. This Study investigates the thermal and ventilation performance of a sports hall within an aquatic centre using computational fluid dynamics (CFD) simulations. IES Virtual Environment software was used to perform the simulations. A number of scenarios were tested by changing the position of extract fans as well as by incorporating natural ventilation strategies. A high level of discomfort was observed in the space. Better comfort condition was achieved by changing the location of exhaust fans ad openings. The results help to recommend some guidelines to inform the proposed refurbishment plans of the site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the thermal analysis of liquid containing Al2O3 nanoparticles in a microfluidic platform using an infrared camera. The small dimensions of the microchannel along with the low flow rates (less than 120 μl min−1) provide very low Reynolds numbers of less than 17.5, reflecting practical parameters for a microfluidic cooling platform. The heat analysis of nanofluids has never been investigated in such a regime, due to the deficiencies of conventional thermal measurement systems. The infrared camera allows non-contact, three dimensional and high resolution capability for temperature profiling. The system was studied at different w/w concentrations of thermally conductive Al2O3 nanoparticles and the experiments were in excellent agreement with the computational fluid dynamics (CFD) simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The development of new diagnostic technologies for cerebrovascular diseases requires an understanding of the mechanism behind the growth and rupture of cerebral aneurysms. To provide a comprehensive diagnosis and prognosis of this disease, it is desirable to evaluate wall shear stress, pressure, deformation and strain in the aneurysm region, based on information provided by medical imaging technologies. Methods: In this research, we propose a new cyber-physical system composed of in vitro dynamic strain experimental measurements and computational fluid dynamics (CFD) simulation for the diagnosis of cerebral aneurysms. A CFD simulation and a scaled-up membranous silicone model of a cerebral aneurysm were completed, based on patient-specific data recorded in August 2008. In vitro blood flow simulation was realized with the use of a specialized pump. A vision system was also developed to measure the strain at different regions on the model by way of pulsating blood flow circulating inside the model. Results: Experimental results show that distance and area strain maxima were larger near the aneurysm neck (0.042 and 0.052), followed by the aneurysm dome (0.023 and 0.04) and finally the main blood vessel section (0.01 and 0.014). These results were complemented by a CFD simulation for the addition of wall shear stress, oscillatory shear index and aneurysm formation index. Diagnosis results using imaging obtained in August 2008 are consistent with the monitored aneurysm growth in 2011. Conclusion: The presented study demonstrates a new experimental platform for measuring dynamic strain within cerebral aneurysms. This platform is also complemented by a CFD simulation for advanced diagnosis and prediction of the growth tendency of an aneurysm in endovascular surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Evolved over millions of years’ natural selection, very thin and lightweight wild silkworm cocoons can protect silkworms from environmental hazards and physical attacks from predators while supporting their metabolic activity. The knowledge of structure-property-function relationship of multi-layered composite silk cocoon shells gives insight into the design of next-generation protection materials. The mechanical and thermal insulation properties of both domestic (Bombyx mori, or B. moriand Samia. cynthia, or S. cynthia) and wild (Antheraea pernyi and Antheraea mylitta, or A. pernyi and A. mylitta) silkworm cocoons were investigated. The research findings are of relevance to the bio-inspired design of new protective materials and structures.
The 180 degree peel tests and needle penetration tests were used for examining the peel resistance and needle penetration resistance of both domestic and wild silkworm cocoon walls. The temperatures inside and outside of the whole silkworm cocoons under warm, cold and windy conditions were monitored for investigating the cocoon’s thermal insulation function. Computational fluid dynamics (CFD) models were created to simulate the heat transfer through the A. pernyi cocoon wall.
The wild cocoons experienced much higher peeling peak loads than the domestic cocoon. This transfers to a maximum work-of-fracture (WOF) of about 1000 J/m2 from the A. pernyi outer layer, which was 10 times of the B. mori cocoon. The A. pernyi wild cocoon exhibited a maximum penetration force (11 N) that is 70 % higher than a woven aramid fabric. Silk sericin is shown to play a critical role in providing needle penetration resistance of the non-woven composite cocoon structure by restricting the relative motion of fibres, which prevents the sharp tip of the needle from pushing aside fibres and penetrating between them. The wild A. pernyi cocoon exhibits superior thermal buffer over the domestic B. mori cocoon. The unique structure of the A. pernyi cocoon wall with mineral crystals deposited on the cocoon outer surface, can prohibit most of the air from flowing inside of the cocoon structure, which shows strong wind resistance under windy conditions.