15 resultados para competitive interactions

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competitive interactions between Galaxias maculatus, native to southeastern Australia, and Gambusia holbrooki, an exotic pest, were examined in relation to two types of artificial cover and a food source. Experiments were performed in an 800 l tank using photographic techniques. The relative distance of G. maculatus from cover or food source before and after the introduction of G. holbrooki were compared. Also, the proportions of the species were altered to examine the effects of unequal numbers on dominance behaviour. It was found that G. holbrooki was unable to out compete G. maculatus for either cover or food. The distance of G. maculatus from a food source was seen to increase following the introduction of G. holbrooki, when they outnumbered G. maculatus by 3 to 1. Although the distance from the food of G.maculatus increased following the introduction of G. holbrooki, in all cases the mean distance of G.␣maculatus from cover or food was less than that of G. holbrooki. Significant intra-species competition appeared to occur between G. maculatus and it may be that this competition had a greater effect than the competitive pressure G. holbrooki was able to place on the natives. This study revealed that the exotic pest species, G. holbrooki, could not out compete a small native Australian fish species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herbaceous and woody plants represent different fuel types in flammable ecosystems, due to contrasting patterns of growth and flammability in response to productivity (moisture availability). However, other factors, such as soil type, fire regimes and competitive interactions may also influence the relative composition of herbaceous and woody plants within a community. The Mediterranean climate region of south eastern Australia is transitional between two contrasting fuel systems; herbaceous dominated in the dry north, versus woody plant dominated shrublands in the relatively moist south. Across the rainfall gradient of the region, there are confounded changes in dominant soil types and fire frequency. We used model-subset selection using Akaike's Information Criterion to examine potential driving mechanisms of community compositional change from herbaceous (e.g. Triodia scariosa, Austrostipa sp.) to woody plants (e.g. Beyeria opaca, Leptospermum coriaceum, Acacia ligulata) by measuring relative cover across combinations of rainfall, time since the last fire (TSF) and soil type. We examined the relative influence of environmental versus competitive interactions on determining the cover of perennial hummock grass, T. scariosa, and co-occurring woody shrubs. Rainfall and soil types, rather than competition, were the over-arching determinants of the relative cover of grasses and shrubs. Given the sensitivity to rainfall, our results indicate there is strong potential for the nature of fuel, flammability and fire regimes to be altered in the future via climate change in this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological invasions are acknowledged among the main drivers of global changes in biodiversity. Despite compelling evidence of species interactions being strongly regulated by environmental conditions, there is a dearth of studies investi-gating how the effects of non-native species vary among areas exposed to different anthropogenic pressures. Focusing on marine macroalgae, we performed a meta-analysis to test whether and how the direction and magnitude of their effects on resident communities and species varies in relation to cumulative anthropogenic impact levels. The relationship between human impact levels and non-native species impact intensity emerged only for a reduced subset of the response variables examined. Yet, there was a trend for the effects of non-native species on community biomass and abundance and on species abundance to become less negative at heavily impacted sites. By contrast, the magnitude of negative effects of seaweed on community evenness tended to increase with human impact levels. The hypothesis of decreasing severity of invader’ impacts along a gradient of habitat degradation was also tested experimentally at a regional scale by comparing the effects of the removal of non-native alga,
Caulerpa cylindracea, on resident assemblages among rocky reefs exposed to different anthropogenic pressures. Assemblages at urban and pristine site did not differ when invaded, but did so when C. cylindracea was removed. Our results suggest that, despite the generally weak relationship between human impacts levels and non-native species impacts, more negative impacts can be expected in less stressful environments (i.e. less degraded or pristine sites), where competitive interactions are presumably the driving force structuring resident communities. Implementing strategies for controlling the establishment of non-native seaweeds should be, thus, considered a priority for preserving biodiversity in relatively pristine areas. On the other hand, control of invaders at degraded sites could be warranted to lessen their role as propagule sources

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Environmental conditions may influence the presence and strength of competitive interactions between different life forms, thereby shaping community composition and structure, and corresponding fuel dynamics. Woodland and shrubland communities of the Mediterranean climate region of South Eastern Australia contain a varied mixture of herbaceous and woody plants. The ratio of herbaceous to woody plants changes along gradients of temperature, moisture and soil fertility. This study aimed to experimentally examine the relative importance of, and interactions between environmental controls (moisture and soil fertility) on the balance of dominant herbaceous (Triodia scariosa) and woody plants (e.g. Acacia ligulata and Leptospermum coriaceum) and their ultimate effects on fuel and fire regimes. The results suggest that environmental determinants of the growth of T. scariosa are likely to be more important than interactions with shrubs in controlling the distribution of T. scariosa. The growth of T. scariosa was consistently higher under hot temperatures and on the less fertile yellow sands, which dominate the south of the region. The results suggest that there is strong potential for the distribution and abundance of T. scariosa to be altered in the future with changes in temperature associated with climate change. The distribution of soil types across the Mediterranean climate region of South Eastern Australia may be predisposed to favour the southerly expansion of T. scariosa-dominated communities in the future under a warmer climate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work, nanostructured blends were prepared from double crystalline diblock copolymer poly(ɛ-caprolactone)-block-poly(ethylene oxide) and homopolymer poly(4-vinyl phenol) (PVPh). The diblock copolymer PEO-b-PCL consists of two immiscible crystallizable blocks wherein both PEO and PCL blocks can form hydrogen bonds with PVPh. In these A-b-B/C diblock copolymer/homopolymer blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically, PVPh and PEO block interact strongly whereas PVPh and PCL block interact weakly. The TEM and SAXS results show that the cubic PEO-b-PCL diblock copolymer changes into ordered hexagonal cylindrical morphology upon addition of 20 wt % PVPh followed by disordered bicontinuous phase in the blend with 40 wt % PVPh and then to homogeneous phase at 60 wt % PVPh and above blends. Up to 40 wt % PVPh there is only weak interaction between PVPh and PCL due to the selective hydrogen bonding between PVPh and PEO. However, with higher PVPh concentration, the blends become homogeneous since a sufficient amount of PVPh is available to form hydrogen bonds with both PEO and PCL. A structural model was proposed to explain the self-assembly and microphase morphology of these blends based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interaction between each block of the block copolymer and the homopolymer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microphase separation through competitive hydrogen bonding interactions in ABC/D triblock copolymer/ homopolymer complexes is studied for the first time. This study investigated self-assembled nanostructures that are obtained in the bulk, by the complexation of a semicrystalline polystyrene-block-poly(4-vinylpyridine)-block-poly(ethylene oxide) (SVPEO) triblock copolymer with a poly(4-vinyl phenol) (PVPh) homopolymer in tetrahydrofuran (THF). In these complexes, microphase separation takes place due to the disparity in intermolecular interactions among PVPh/P4VP and PVPh/PEO pairs. At low PVPh concentrations, PEO interacts relatively weakly with PVPh, whereas in the complexes containing more than 30 wt% PVPh, the PEO block interacts considerably with PVPh, leading to the formation of composition-dependent nanostructures. SAXS and TEM results indicate that the cylindrical morphology of a neat SVPEO triblock copolymer changes into lamellae structures at 20 wt% of PVPh then to disordered lamellae with 40 wt% PVPh. Wormlike structures are obtained in the complex with 50 wt%PVPh, followed by disordered spherical microdomains with size in the order of 40–50 nm in the complexes with 60–80 wt% PVPh. Moreover, when the content of PVPh increases to 80 wt%, the complexes show a completely homogenous phase of PVPh/P4VP and PVPh/PEO with phase separated spherical PS domains. The fractional crystallization behavior in SVPEO and complexes at lower PVPh content was also examined. A structural model was proposed to explain the microphase separation and self-assembled morphologies of these complexes based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interactions between each component block of the copolymer and the homopolymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – Increasingly, organizations in the Asia-Pacific region are recognizing the importance of cross-cultural management to the sustainability of their competitive edge. Although the literature is replete with cross-cultural studies of individualism and collectivism, little information is available on the factors that foster effective individualist–collectivist interaction (ICI) within organizations. This paper attempts to provide a theoretical description of individualists and collectivists at the individual
level of analysis, which offers specific testable hypotheses about the effect of self-representation on prejudice between individualists and collectivists (ICs).

Design/methodology/approach
– In this paper, a theoretical model is presented in which intergroup prejudices and interpersonal prejudices mediate the effects of ICI and bicultural orientation toward cross-cultural experiences and, in which, the dissimilarity openness of the climate
moderates the level and outcome of prejudices flowing from ICI.

Findings – The model depicts that the outcomes of ICI are mediated by the intergroup prejudices of collectivists and the interpersonal prejudices of individualists, which are moderated by the extent of diversity-oriented HRM policies and practices and individuals’ orientation to cross-cultural experiences. When workforces become culturally diverse, organizations should modify HRM practices to enable the full use of the range of skills and talents available from the diversity, and to ensure affective and behavioral costs are minimized. As globalization and international competition will continue to increase, organizations including those in the Asia-Pacific region, should seriously reevaluate their HRM policies to adapt and take advantage of an increasingly culturally diverse workforce.

Originality/value
– The model provides a useful basis upon which organization researchers and practitioners can base their respective agendas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured complexes were prepared from poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) and poly(4-vinylphenol) (PVPh) in tetrahydrofuran (THF). The phase behavior, specific interactions, and morphology were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). In this A-b-B/C type block copolymer/homopolymer system, both blocks of the PCL-b-P2VP block copolymer have favorable intermolecular interaction toward PVPh via hydrogen bonding, but the interaction between P2VP block and PVPh is significantly stronger than that between PCL block and PVPh. It was found that the disparity in competitive intermolecular interactions, specifically PVPh and P2VP block interact strongly whereas PVPh and PCL block interact weakly, leads to the formation of a variety of nanostructures depending on PVPh concentration. Spherical micelles of 30−40 nm in diameter were obtained in the complex with 10 wt % PVPh, followed by wormlike micelles with size in the order of 40−50 nm in the complexes with 30−60 wt % PVPh. At low PVPh concentrations, PCL interacts weakly with PVPh, whereas in the complexes containing more than 20 wt % PVPh, the PCL block began to interact considerably with PVPh, leading to the formation of composition-dependent nanostructures. The complex becomes homogeneous with PVPh content beyond 60 wt %, since a sufficient amount of PVPh is available to form hydrogen bonds with both PCL and P2VP. Finally, a model was proposed to explain the self-assembly and microphase morphology of these complexes based on the experimental results obtained. The competitive hydrogen-bonding interactions cause the self-assembly and formation of different microphase morphologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are many participants in the tourism network who have vested interests in tourism development. These organizations include hotels, associations of hotels and hotel owners, inbound travel agents, travel wholesalers, tourism industry associations, airlines, cruise lines, tourism promotional agencies, regional and local tourism authorities, SME tourism businesses, conference and convention centres and many more. Individuals in the tourism industry intermittently change employment. They often remain in the industry and can move between types of organizations. Their contacts, associations and personal networks remain useful and indeed are utilized. The Interactive Approach postulated by the IMP Group proposes that both suppliers and manufacturers are often involved in close, long-lasting adaptive relationships. Firms within relationships must work together, share objectives, share information and also communicate clearly and precisely using a common language. Here relationship partners should have a similar point of view on the meaning of marketing strategy and related concepts including market segmentation, differentiation and competitive positioning.

This paper seeks to assess the nature, perspectives and characteristics of interactions in the tourism network in Australia. There are two stages of this research. The first stage obtained the perspectives of network participants on the challenges facing tourism, key growth segments, brand and promotional strategies and customer insights and satisfaction levels. Participants were also asked to provide advice to the national marketing organization on a range of developmental topics. The second stage of this research assesses the interaction patterns among network participants Network picture, network position, resource constellations, interaction, resources and activities, interdependence, adaptation, actor bonds, strategy and change are also assessed. The relationships are political and consultative in nature. There is much interdependence and possible conflict between the network participants. The national tourism body has particular skills in tourism planning and tourism research. They also have significant resources and the ability to influence inbound tourism patterns. This paper seeks to assess and understand the interactions within this network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends of poly(2-vinyl pyridine)-block-poly(methyl methacrylate) (P2VP-b-PMMA) and poly(hydroxyether of bisphenol A) (phenoxy) were prepared by solvent casting from chloroform solution. The specific interactions, phase behavior and nanostructure morphologies of these blends were investigated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this block copolymer/homopolymer blend system, it is established that competitive hydrogen bonding exists as both blocks of the P2VP-b-PMMA are capable of forming intermolecular hydrogen bonds with phenoxy. It was observed that the interaction between phenoxy and P2VP is stronger than that between phenoxy and PMMA. This imbalance in the intermolecular interactions and the repulsions between the two blocks of the diblock copolymer lead to a variety of phase morphologies. At low phenoxy concentration, spherical micelles are observed. As the concentration increases, PMMA begins to interact with phenoxy, leading to the changes of morphology from spherical to wormlike micelles and finally forms a homogenous system. A model is proposed to describe the self-assembled nanostructures of the P2VP-b-PMMA/phenoxy blends, and the competitive hydrogen bonding is responsible for the morphological changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates self-assembly and microphase separation induced by competitive hydrogen bonding in A-b-BC diblock copolymer/homopolymer systems. A series of ordered and disordered morphologies including lamellae, hexagonal cylinders, wormlike microdomains and hierarchical structures were observed. The morphological transitions are correlated with hydrogen bonding interactions in terms of the association constants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of aquatic macrophytes in stimulating biodiversity and maintaining clear waters is currently undisputed. The management of (eutrophic) shallow waters is therefore often directed at (re-)establishing macrophyte domination. In contrast, the role of water birds has long been considered of minor importance for the functioning of fresh water ecosystems. Indeed, in terms of biomass and production, water birds constitute only a minor part of these systems. However, water birds may graze heavily on water plants under certain circumstances, and the question arises whether herbivorous water birds have an important indirect effect on shallow fresh water systems. Mainly illustrated with the interaction between Bewick’s Swans and Fennel Pondweed, we present data on the role that water plants may play in the life of water birds and how water birds may impact water plants’ fitness in terms of survival, production, dispersal and competitive ability. It appears that water plants may be crucial for water birds during periods of high-energy requirements, such as migration. Despite the plants’ costs associated with water bird grazing, the interaction between water birds and water plants varies in nature from an apparent predator–prey relationship to a mutually beneficial interaction depending on the context and the perspective. For the case of the Bewick’s Swan–Fennel Pondweed interaction, regular bird grazing is sustainable and may actually favour the plant’s dispersal. Thus, Bewick’s Swans themselves may in fact play a crucial role in establishing and maintaining the Fennel Pondweed rich staging sites between the swans’ wintering and breeding grounds, which are vital for the swans’ successful migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microphase separation induced by competitive hydrogen bonding interactions in double crystalline diblock copolymer/homopolymer blends was studied for the first time. Poly(ethylene oxide)- block-poly(e-caprolactone) (PEO-b-PCL)/poly(4-vinylphenol) (PVPh) blends were prepared in tetrahydrofuran. The diblock copolymer PEO-b-PCL consists of two immiscible crystallizable blocks wherein bothPEO and PCL blocks can form hydrogen bonds with PVPh. In these A-b-B/C diblock copolymer homopolymer blends, microphase separation takes place due to the disparity in intermolecular interactions; specifically, PVPh and PEO block interact strongly whereas PVPh and PCL block interact weakly. The TEM and SAXS results show that the cubic PEO-b-PCL diblock copolymer changes into ordered hexagonal cylindrical morphology upon addition of 20 wt % PVPh followed by disordered bicontinuous phase in the blend with 40 wt % PVPh and then to homogeneous phase at 60 wt % PVPh and above blends. Up to 40 wt % PVPh there is only weak interaction between PVPh and PCL due to the selective hydrogen bonding between PVPh and PEO. However, with higher PVPh concentration, the blends become homogeneous since a sufficient amount of PVPh is available to form hydrogen bonds with both PEO and PCL. A structural model was proposed to explain the self-assembly and microphase morphology of these blends based on the experimental results obtained. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen bonding interaction between each block of the block copolymer and the homopolymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new route to prepare nanostructured thermosets by the utilization of intermolecular hydrogen-bonding interactions is demonstrated here. In this study, competitive hydrogen-bonding-induced microphase separation (CHIPS) in epoxy resin (ER) containing an amphiphilic block copolymer poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) is investigated for the first time. The phase separation takes place due to the disparity in the hydrogen-bonding interactions in ER/P2VP and ER/PCL pairs leading to the formation of ordered nanostructures in the ER/block copolymer blends. SAXS and TEM results indicate that the hexagonally packed cylindrical morphology of neat PCL-b-P2VP block copolymer remains but becomes a core-shell structure at 10 wt % addition of ER, and changes to regular lamellae structures at 20-50 wt % then to disordered lamellae with 60 wt % ER. Wormlike structures are obtained in the blends with 70 wt % ER, followed by a completely homogeneous phase of ER/P2VP and ER/PCL. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen-bonding interactions between each component block copolymer and the homopolymer. This versatile method to develop nanostructured thermosets, involving competitive hydrogen-bonding interactions, could be used for the fabrication of hierarchical and functional materials.