16 resultados para coating process

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite LiFe0.4Mn0.6PO4/C microspheres are considered advanced cathode materials for electric vehicles and other high-energy density applications due to their advantages of high energy density and excellent cycling stability. LiFe0.4Mn0.6PO4/C microspheres have been produced using a double carbon coating process employing traditional industrial techniques (ball milling, spray-drying and annealing). The obtained LiFe0.4Mn0.6PO4 microspheres exhibit a high discharge capacity of around 166 mA h g-1 at 0.1 C and excellent rate capabilities of 132, 103, and 72 mA h g-1 at 5, 10, and 20 C, respectively. A reversible capacity of about 152 mA h g-1 after 500 cycles at a current density of 1 C indicates an outstanding cycling stability. The excellent electrochemical performance is attributed to the micrometer-sized spheres of double carbon-coated LiFe0.4Mn0.6PO4 nanoparticles with improved electric conductivity and higher Li ion diffusion coefficients, ensuring full redox reactions of all nanoparticles. The results show that the advanced high-energy density cathode materials can be produced using existing industry techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel one-step hydrothermal coating process was used to produce nanohydroxyapatite (nano-HA) coating on a titanium–niobium (TiNb) alloy substrate in a newly designed solution containing calcium and phosphate ions. The morphology of the coating was studied using scanning electron microscopy. The phase identification of the coating was carried out using X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy and transmission electron microscopy. The reaction between the surface of TiNb alloy and the solution during the hydrothermal process was studied by Xray photoelectron spectroscopy. Results show that the coating formed on the surface of TiNb alloy was composed of nano-HA particles. During the hydrothermal process, TiO2 and Nb2O5 formed on the TiNb alloy surface and hydrated to Ti(OH)4 and Nb(OH)5, respectively. Calcium phosphate nucleated and grew into a layer of nano-HA particles on the surface of TiNb alloy under the hydrothermal conditions. The crystallinity of the nano-HA coating was improved with the increase in hydrothermal treatment temperature and time duration. Nano-HA coating with good crystallinity was produced on the TiNb alloy via the hydrothermal process at a temperature of 200 ºC for 12 h.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of zinc oxide (ZnO) nanoparticles as ultraviolet (UV) absorbers for many organic substrates is limited because of the high photocatalytic activity of ZnO. In this study, a facile and efficient technique for the preparation of a hybrid material of silica-coated ZnO nanoparticles was used to reduce the photocatalytic activity of ZnO. Monodispersed ZnO nanopartcles were prepared by wet chemistry and the particle surface was modified by tetraethylorthosilicate to form a silica coating via the Sto¨ ber method. ZnO samples, both before and after the coating process, were investigated by transmission electron microscopy, X-ray diffraction, dynamic light scanning, infrared, and UV-Vis absorption spectroscopy. The effect of the surface modification on the photocatalytic activity of ZnO was studied by monitoring the degradation of Rhodamine B caused by photo-generated free radicals. The results implied that the photo-generation of free-radicals was strongly quenched by the presence of silica on the particle surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Substrate-induced coagulation (SIC) is a coating process based on self-assembly for coating different surfaces with fine particulate materials. The particles are dispersed in a suitable solvent and the stability of the dispersion is adjusted by additives. When a surface, pre-treated with a flocculant e.g. a polyelectrolyte, is dipped into the dispersion, it induces coagulation resulting in the deposition of the particles on the surface. A non-aqueous SIC process for carbon coating is presented, which can be performed in polar, aprotic solvents such as N-Methyl-2- pyrrolidinone (NMP). Polyvinylalcohol (PVA) is used to condition the surface of substrates such as mica, copperfoil, silicon-wafers and lithiumcobalt oxide powder, a cathode material used for Li-ion batteries. The subsequent SIC carbon coating produces uniform layers on the substrates and causes the conductivity of lithiumcobalt oxide to increase drastically, while retaining a high percentage of active battery material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin porous materials that can spontaneously transport oil fluids just in a single direction have great potential for making energy-saving functional membranes. However, there is little data for the preparation and functionalities of this smart material. Here, we report a novel method to prepare one-way oil-transport fabrics and their application in detecting liquid surface tension. This functional fabric was prepared by a two-step coating process to apply flowerlike ZnO nanorods, fluorinated decyl polyhedral oligomeric silsesquioxanes, and hydrolyzed fluorinated alkylsilane on a fabric substrate. Upon one-sided UV irradiation, the coated fabric shows a one-way transport feature that allows oil fluid transport automatically from the unirradiated side to the UV-irradiated surface, but it stops fluid transport in the opposite direction. The fabric still maintains high superhydrophobicity after UV treatment. The one-way fluid transport takes place only for the oil fluids with a specific surface tension value, and the fluid selectivity is dependent on the UV treatment time. Changing the UV irradiation time from 6 to 30 h broadened the one-way transport for fluids with surface tension from around 22.3 mN/m to a range of 22.3-56.7 mN/m. We further proved that this selective one-way oil transport can be used to estimate the surface tension of a liquid simply by observing its transport feature on a series of fabrics with different one-way oil-transport selectivities. To our knowledge, this is the first example to use one-way fluid-transport materials for testing the liquid surface tension. It may open up further theoretical studies and the development of novel fluid sensors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydroxyapatite (HA) was coated on the surface of a titanium-niobium (Ti-Nb) alloy by a sol-gel process. Triethyl phosphite and calcium nitrate were used as the phosphorus (P) and calcium (Ca) precursors respectively to prepare a Ca/P sol solution. The Ti-Nb alloy was dip-coated in the sol and heated at 600°C for 30 minutes. X-ray diffraction (XRD) analysis indicated the major phase constituent of the coating after heat treatment was HA. Scanning electron microscopy (SEM) observation showed that a few cracks were distributed on the HA coating. The in-vitro bioactivity of the HA coated Ti-Nb alloy was assessed using a cell culture of SaOS-2 osteoblast-like cells. The density of cell attachment was determined by MTT assay; the cell morphology was observed by SEM. Results indicated that the density of cell attachment on the surface of the Ti-Nb alloy was significantly increased by HA coating. Cell morphology observation showed that cells attached, spread and grew well on the HA coated surface. It can be concluded that the HA coating improved the in-vitro bioactivity of Ti-Nb alloy effectively.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The invention relates to coating compositions and processes for the preparation thereof. The coating composition is used for the formation of hydrophobic coatings on a substrate. The coating composition may be used for the formation of hydrophobic particulate coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work employed a commercial nitrocaburising process to diffuse a coating onto M2 grade high speed tool steel. Properties of the nitrocaburised coating (CN) such as thickness, roughness and hardness were characterised using a variety of techniques including Glow-Discharge Optical Emission Spectrometry (GD-OES) and Scanning Electron Microscopy (SEM). A tribological test has been developed in which two nominally identical crossed cylinders slide over each other under selected test conditions. The test has been employed to investigate the wear performance of both CN coated and uncoated M2 specimens and frictional behaviour of the sliding interface between the tool and a AISI 1019 steel workpiece under unlubricated (dry) and lubricated conditions. Fourier Transform Infrared Spectroscopy (FTIR) was used to monitor the formation of chemical species from the oxidation of lubricant during tribological testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the application of neural networks to the recognition of lubrication defects typical to an industrial cold forging process employed by fastener manufacturers. The accurate recognition of lubrication errors, such as coating not being applied properly or damaged during material handling, is very important to the quality of the final product in fastener manufacture. Lubrication errors lead to increased forging loads and premature tool failure, as well as to increased defect sorting and the re-processing of the coated rod. The lubrication coating provides a barrier between the work material and the die during the drawing operation; moreover it needs be sufficiently robust to remain on the wire during the transfer to the cold forging operation. In the cold forging operation the wire undergoes multi-stage deformation without the application of any additional lubrication. Four types of lubrication errors, typical to production of fasteners, were introduced to a set of sample rods, which were subsequently drawn under laboratory conditions. The drawing force was measured, from which a limited set of features was extracted. The neural network based model learned from these features is able to recognize all types of lubrication errors to a high accuracy. The overall accuracy of the neural network model is around 98% with almost uniform distribution of errors between all four errors and the normal condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper nanocrystallite apatite coating on TiZr substrate was prepared by a biomimetic process. Surface morphology, thickness, crystalline phases a~nd bond strength of the coating were investigated by SEM, XRD and tensIle test, respectively. Results show that the apatite coating exhibIts a nanocrystalIite structure with similar stoichiometry to that of natural bone. The apatite layer becomes thicker with the increasing of the SBF immersion time and is firmly adhered to the substrate with the highest average bond strength of 15.5 MPa. This nanocrystallite apatite coating is expected to bond to surrounding bone tissue directly in vivo after implantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An abrasion-resistant, electrically conductive material comprising a natural fibre-containing substrate and an electrically conductive conjugated polymer coating thereon is disclosed. A process for preparing an abrasion-resistant, electrically conductive material is also disclosed. The process comprises providing at least one monomer capable of forming an electrically conductive conjugated polymer, and a suitable substrate having a substrate surface, subjecting the substrate surface to a surface treatment step to improve abrasion resistance, and exposing the substrate surface to a vapour of the monomer to form an electrically conductive conjugated polymer coating thereon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, titanium (Ti) samples were surface-modified by titania (TiO2), silica (SiO2) and hydroxyapatite (HA) coatings using a sol-gel process. The bioactivity of the film-coated Ti samples was investigated by cell attachment and morphology study using human osteoblast-like SaOS-2 cells. Results of the cell attachment indicated that the densities of cell attachment on the surfaces of Ti samples were significantly increased by film coatings; the density of cell attachment on HA film-coated surface was higher than those on TiO2 and SiO2 film-coated surfaces. Cell morphology study showed that the cells attached, spread and grew well on the three kinds of film-coated surfaces. It can be concluded that the three kinds of film coatings can bioactivate the surfaces of Ti samples effectively. Overall, Ti sample with HA film-coated surface exhibited the best bioactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel self-healing system, consisting of poly(lactic-co-glycolic) acid (PLGA) porous particles loaded with a corrosion inhibitor, i.e. benzotriazole (BTA), has been successfully achieved via direct electro-spray deposition and subsequent epoxy spraying upon magnesium (Mg) alloy AMlite. The two-step process greatly simplified the multi-step fabrication of smart coatings reported previously. The PLGA particles demonstrate rapid response to both water and pH increase incurred by corrosion of Mg, ensuring instant and ongoing release of BTA to self-heal the protective functionality and retard further corrosion. Furthermore, nanopores in the PLGA–BTA microparticles, formed by the fast evaporation of dichloromethane during the electrospray process, also contribute to the fast release of BTA. Using Mg alloy AMlite as a model substrate which requires corrosion protection, potentiodynamic polarisation characterisation and scratch testing were adopted to reveal the anti-corrosion capability of the active coating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through comparative studying on LiFePO4/C preparation process of adding carbon source in precursor and pre-sintered material, marked as LFP-1 (in-situ carbon coating) and LFP-2 respectively, by means of C-S test, XRD, SEM, BET, Raman, the effects of carbon content, morphology, particle size and surface carbon structure on the electrochemical performance of LiFePO4/C cathodes were investigated. SEM images showed that particle sizes of LFP-1 and LFP-2 are about 10μm and 100nm respectively. The EIS and galvnostatic charge-discharge tests indicated that LFP-1 has lower charge transfer resistance (Rct), better rate and cycle performance than that of LFP-2, which can be attributed to the different microstructure and the higher degree of graphitized carbon of LiFePO4/C. Raman spectroscopic analysis showed that the ratio of the ID/IG and Asp3/Asp2 of LFP-1 is lower that of LFP-2, which means the degree of graphitized carbon of LFP-1 is higher than that of LEP-2. These results have important significance for improving the overall performance of olivine cathode materials for lithium ion batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superhydrophobic cotton fabrics with a very low contact angle hysteresis were prepared using a single-pot coating solution comprising SU-8 (a negative photoresist), a fluorinated alkyl silane and silica nanoparticles. The fabric was treated using a dip-coating technique and subsequently cured under UV light. The coated fabric showed excellent superhydrophobicity with a water contact angle as high as 163° and a sliding angle as low as 2°. The coating was durable enough to withstand 100 laundry cycles. It also had excellent stability against long immersion times in organic solvents, and acid and base solutions.