49 resultados para climate-change impacts

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bangladesh exemplifies the complex challenges facing densely populated coastal regions. The
pressures on the country are immense: around 145 million people live within an area of just 145,000 sq-km at
the confluence of three major river systems: the Ganges, the Brahmaputra and the Meghna. While progress
has been made, poverty remains widespread, with around 39% of children under five malnourished. Most of
its land-mass lies below 10m above sea level with considerable areas at sea level, leading to frequent and
prolonged flooding during the monsoons. Sea level rise is leading to more flooding as storm surges rise off
higher sea levels, pushing further inland. Higher sea levels also result in salt-water intrusion into freshwater
coastal aquifers and estuaries, contaminating drinking water and farmland. Warmer ocean waters are also
expected to lead to an increase in the intensity of tropical storms.
Bangladesh depends on the South Asian summer monsoon for most of its rainfall which is expected to
increase, leading to more flooding. Climate scientists are also concerned about the stability of monsoon and
the potential for it to undergo a nonlinear phase shift to a drier regime. Bangladesh faces an additional
hydrological challenge in that the Ganges and Brahmaputra rivers both rise in the Himalaya-Tibetan Plateau
region, where glaciers are melting rapidly. The Intergovernmental Panel on Climate Change (IPCC)
concluded that rapid melting is expected to increase river flows until around the late-2030s, by which time
the glaciers are expected to have shrunk from their 1995 extent of 500,000 sq-km to an expected 100,000 sqkm.
After the 2030s, river flows could drop dramatically, turning the great glacier-fed rivers of Asia into
seasonal monsoon-fed rivers. The IPCC concluded that as a result, water shortages in Asia could affect more
than a billion people by the 2050s. Over the same period, crop yields are expected to decline by up to 30% in
South Asia due to a combination of drought and crop heat stress. Bangladesh is therefore likely to face
substantial challenges in the coming decades.
In order to adequately understand the complex, dynamic, spatial and nonlinear challenges facing Bangladesh,
an integrated model of the system is required. An agent-based model (ABM) permits the dynamic
interactions of the economic, social, political, geographic, environmental and epidemiological dimensions of
climate change impacts and adaptation policies to be integrated via a modular approach. Integrating these
dimensions, including nonlinear threshold events such as mass migrations, or the outbreak of conflicts or
epidemics, is possible to a far greater degree with an ABM than with most other approaches.
We are developing a prototype ABM, implemented in Netlogo, to examine the dynamic impacts on poverty,
migration, mortality and conflict from climate change in Bangladesh from 2001 to 2100. The model employs
GIS and sub-district level census and economic data and a coarse-graining methodology to allow model
statistics to be generated on a national scale from local dynamic interactions. This approach allows a more
realistic treatment of distributed spatial events and heterogeneity across the country. The aim is not to
generate precise predictions of Bangladesh’s evolution, but to develop a framework that can be used for
integrated scenario exploration. This paper represents an initial report on progress on this project. So far the
prototype model has demonstrated the desirability and feasibility of integrating the different dimensions of
the complex adaptive system and, once completed, is intended to be used as the basis for a more detailed
policy-oriented model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is expected to have significant impacts on hydrologic regimes and freshwater ecosystems, and yet few basins have adequate numerical models to guide the development of freshwater climate adaptation strategies. Such strategies can build on existing freshwater conservation activities, and incorporate predicted climate change impacts. We illustrate this concept with three case studies. In the Upper Klamath Basin of the western USA, a shift in land management practices would buffer this landscape from a declining snowpack. In the Murray–Darling Basin of south-eastern Australia, identifying the requirements of flood-dependent natural values would better inform the delivery of environmental water in response to reduced runoff and less water. In the Savannah Basin of the south-eastern USA, dam managers are considering technological and engineering upgrades in response to more severe floods and droughts, which would also improve the implementation of recommended environmental flows. Even though the three case studies are in different landscapes, they all contain significant freshwater biodiversity values. These values are threatened by water allocation problems that will be exacerbated by climate change, and yet all provide opportunities for the development of effective climate adaptation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of all the debates and controversies, a global consensus has been reached that climate change is a reality and that it will impact, in diverse manifestations that may include increased global temperature, sea level rise, more frequent occurrence of extreme weather events, change in weather patterns, etc., on food production systems, global biodiversity and overall human well being. Aquaculture is no exception. The sector is characterized by the fact that the organisms cultured, the most diverse of all farming systems and in the number of taxa farmed, are all poikilotherms. It occurs in fresh, brackish and marine waters, and in all climatic regimes from temperate to tropical. Consequently, there are bound to be many direct impacts on aquatic farming systems brought about by climate change. The situation is further exacerbated by the fact that certain aquaculture systems are dependent, to varying degrees, on products such as fishmeal and fish oil, which are derived from wild-caught resources that are subjected to reduction processes. All of the above factors will impact on aquaculture in the decades to come and accordingly, the aquatic farming systems will begin to encounter new challenges to maintain sustainability and continue to contribute to the human food basket. The challenges will vary significantly between climatic regimes. In the tropics, the main challenges will be to those farming activities that occur in deltaic regions, which also happen to be hubs of aquaculture activity, such as in the Mekong and Red River deltas in Viet Nam and the Ganges-Brahamaputra Delta in Bangladesh. Aquaculture in tropical deltaic areas will be mostly impacted by sea level rise, and hence increased saline water intrusion and reduced water flows, among others. Elsewhere in the tropics, inland cage culture and other aquaculture activities could be impacted by extreme weather conditions, increased upwelling of deoxygenated waters in reservoirs, etc., requiring greater vigilance and monitoring, and even perhaps readiness to move operations to more conducive areas in a waterbody. Indirect impacts of climate change on tropical aquaculture could be manifold but are perhaps largely unknown. The reproductive cycles of a great majority of tropical species are dependent on monsoonal rain patterns, which are predicted to change. Consequently, irrespective of whether cultured species are artificially propagated or not, changes in reproductive cycles will impact on seed production and thereby the whole grow-out cycle and modus operandi of farm activities. Equally, such impacts will be felt on the culture of those species that are based on natural spat collection, such as that of many cultured molluscs. In the temperate region, global warming could raise temperatures to the upper tolerance limits of some cultured species, thereby making such culture systems vulnerable to high temperatures. New or hitherto non-pathogenic organisms may become virulent with increases in water temperature, confronting the sector with new, hitherto unmanifested and/or little known diseases. One of the most important indirect effects of climate change will be driven by impacts on production of those fish species that are used for reduction, and which in turn form the basis for aquaculture feeds, particularly for carnivorous species. These indirect effects are likely to have a major impact on some key aquaculture practices in all climatic regimes. Limitations of supplies of fishmeal and fish oil and resulting exorbitant price hikes of these commodities will lead to more innovative and pragmatic solutions on ingredient substitution for aquatic feeds, which perhaps will be a positive result arising from a dire need to sustain a major sector. Aquaculture has to be proactive and start addressing the need for adaptive and mitigative measures. Such measures will entail both technological and socio-economic approaches. The latter will be more applicable to small-scale farmers, who happen to be the great bulk of producers in developing countries, which in turn constitute the “backbone’ of global aquaculture. The sociological approaches will entail the challenge of addressing the potential climate change impacts on small farming communities in the most vulnerable areas, such as in deltaic regions, weighing the most feasible adaptive options and bringing about the policy changes required to implement these adaptive measures economically and effectively. Global food habits have changed over the years. We are currently in an era where food safety and quality, backed up by ecolabelling, are paramount; it was not so 20 years ago. In the foreseeable future, we will move into an era where consumer consciousness will demand that farmed foods of every form will have to include in their labeled products the green house gas (GHG) emissions per unit of produce. Clearly, aquaculture offers an opportunity to meet these aspirations. Considering that about 70 percent of all finfish and almost 100 percent of all molluscs and seaweeds are minimally GHG emitting, it is possible to drive aquaculture as the most GHG-friendly food source. The sector could conform to such demands and continue to meet the need for an increasing global food fish supply. However, to achieve this, a paradigm shift in our seafood consumption preferences will be needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australian agriculture is very susceptible to the adverse impacts of climate change, with major shifts in temperature and rainfall projected. In this context, this paper describes a research methodology for assessing potential climate change impacts on, and formulating adaptation options for, agriculture at regional level. The methodology was developed and applied in the analysis of climate change impacts on key horticultural commodities—pome fruits (apples and pears), stone fruits (peaches and nectarines) and wine grapes—in the Goulburn Broken catchment management region, State of Victoria, Australia. Core components of the methodology are mathematical models that enable to spatially represent the degree of biophysical land suitability for the growth of agricultural commodities in the region of interest given current and future climatic conditions. The methodology provides a sound analytic approach to 1) recognise regions under threat of declines in agricultural production due to unfolding climatic changes; 2) identify alternative agricultural systems better adapted to likely future climatic conditions and 3) investigate incremental and transformational adaptation actions to improve the problem situations that are being created by climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the climate changes globally time-honoured climate in a region may change and shift to another region. Consequently, local predictors of climate may no longer apply to the area where they were born, but may be invaluable in new regions where previously reliable predictors have become outmoded This paper is set on the proposition thaI traditional (indigenous) know/edge can be a strategic source in adapting to climate change, in these changing times. The research reported in this paper takes the Societal Knowledge Management approach where knowledge that rests within local communities, is harnessed to inform local communities and scientists regarding climate change impacts, so as to adapt to them accurately. A phased study was conducted that aimed at acquiring, synthesising and disseminating traditional knowledge regarding change in monsoon patterns in India. Traditional wisdom prevalent among fhe myriad communities of India, was collected, collated and classified into knowledge spheres such as Bio-Indicators, Wind Movement, Atmospheric Pal/ems, Astrological Methods, Festivals and Rituals, Direction, Characteristics of the Rain, Characteristics of Celestial Bodies etc and incorporaled into a knowledge portal, which is the basis for building the Societal Knowledge Management System (SKM). Subsequently, the SKM is to be harmonised with scientific predictors on seasonal weather patterns will allow researchers to identify if the existing indicators and monsoon pattems are subject to change, and if so how. Research in progress is aimed at integrating the knowledge with modern science and disseminating this knowledge through local knowledge centres, at village levels. Furthermore, this study is to be replicated in Australia, by harnessing indigenous knowledge, to build the SKM for Australia that could assist in building a better understanding of the factors that impact the environment, methods of building sustainable predictors for climate and approaches for adapting the climate changes. The research reported is expected to inform policy makers, scientists, governance institutions as well as researchers regarding the applicability of indigenous knowledge in building sustainable predictors for adaptation to climate change in the two countries cited and can be extended into other countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the key issues in Australia for sustainable management of the coastal zone is that the science of climate change has not been widely used by decision-makers to inform coastal governance. There exist opportunities to enhance the dialogue between knowledge-makers and decision-makers, and universities have a key role to play in researching and fostering better linkages. At the heart of these linkages lies the principle of more informed engagement between historically disparate groups. In Australia, the new ‘Flagship’ research programme, funded by the Commonwealth Scientific and Industrial Research Organization (CSIRO), emphasizes their partnering with universities in a more systematic and collaborative manner than previously achieved in such research projects. In order to address sustainability in general and coastal adaptation to climate change in particular, interdisciplinary learning needs to occur between the social and natural sciences; also, transdisciplinary understanding of that interaction needs to be fully developed. New methods of communicative engagement such as computer visualizations and animations, together with deliberative techniques, can help policy-makers and planners reach a better understanding of the significance of the science of climate change impacts on the coast. Deeper engagement across historically disparate groups can lead to the development of epistemological and methodological synergies between social and natural scientists, adaptive learning, reflexive governance, and greater analytical and deliberative understanding among scientists, policymakers and the wider public. This understanding can lead in turn to enhance coastal governance for climate adaptation on the coast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climate change focus in Australia has shifted from mitigation to adaptation with an emphasis on place-specific case studies. The Barwon Estuary Complex (BEC) on the Bellarine Peninsula, central Victoria, was the focus of this place-specific study in which 37 local stakeholders were consulted through a series of semi-structured interviews on the impacts of climate change on their coastal community. Overall there was uniformity in stakeholder perceptions of the climate change impacts and vulnerabilities pertaining to the BEC. In contrast, discussion on adaptation drew a diversity of responses. While 53 per cent of stakeholders indicated a need to limit the use of hard structures, and rather plan around a changing estuarine environment, opinion amongst the community group was divided. Some believed ‘retreat is the only option’ whilst others felt ‘there won’t be much leaving’. The present level of confusion around adaptation highlights the imperative of commencing discussions now to allow sufficient time to develop strategies which are both environmentally and socially responsible. This is important as ultimately it will be the community that will determine whether adaptation strategies are adopted or met with resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-distance migrations are among the wonders of the natural world, but this multi-taxon review shows that the characteristics of species that undertake such movements appear to make them particularly vulnerable to detrimental impacts of climate change. Migrants are key components of biological systems in high latitude regions, where the speed and magnitude of climate change impacts are greatest. They also rely on highly productive seasonal habitats, including wetlands and ocean upwellings that, with climate change, may become less food-rich and predictable in space and time. While migrants are adapted to adjust their behaviour with annual changes in the weather, the decoupling of climatic variables between geographically separate breeding and non-breeding grounds is beginning to result in mistimed migration. Furthermore, human land-use and activity patterns will constrain the ability of many species to modify their migratory routes and may increase the stress induced by climate change. Adapting conservation strategies for migrants in the light of climate change will require substantial shifts in site designation policies, flexibility of management strategies and the integration of forward planning for both people and wildlife. While adaptation to changes may be feasible for some terrestrial systems, wildlife in the marine ecosystem may be more dependent on the degree of climate change mitigation that is achievable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most obvious and expected impacts of climate change is a shift in the distributional range of organisms, which could have considerable ecological and economic consequences. Australian waters are hotspots for climate-induced environmental changes; here, we review these potential changes and their apparent and potential implications for freshwater, estuarine and marine fish. Our meta-analysis detected 300 papers globally on 'fish' and 'range shifts', with ∼7% being from Australia. Of the Australian papers, only one study exhibited definitive evidence of climate-induced range shifts, with most studies focussing instead on future predictions. There was little consensus in the literature regarding the definition of 'range', largely because of populations having distributions that fluctuate regularly. For example, many marine populations have broad dispersal of offspring (causing vagrancy). Similarly, in freshwater and estuarine systems, regular environmental changes (e.g. seasonal, ENSO cycles not related to climate change) cause expansion and contraction of populations, which confounds efforts to detect range 'shifts'. We found that increases in water temperature, reduced freshwater flows and changes in ocean currents are likely to be the key drivers of climate-induced range shifts in Australian fishes. Although large-scale frequent and rigorous direct surveys of fishes across their entire distributional ranges, especially at range edges, will be essential to detect range shifts of fishes in response to climate change, we suggest careful co-opting of fisheries, museum and other regional databases as a potential, but imperfect alternative. © 2011 CSIRO Open Access.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For centuries the Aboriginal Peoples of Australia have been confronted with major ecological, geological and climate events, and had to adapt home shelters and settlements to seasonal variations. Many of these changes have been captured in the cultural traditions of the indigenous people reflecting a harsh coastal environment. Weather patterns and climate change were gauged by the occurrence of the tidal changes, landscape changes, recurring weather events and the acknowledgement of six seasons. Community settlements got established and relocated to adapt to the patterns of nature. This paper investigates if this ancient knowledge can provide answers for adaptation of coastal settlements to a changing climate. Drawing upon recent published literature on predicted coastal climate change impacts in the different regions of Australia, and the review of indigenous settlement planning according to a six season cycle, the author explores traditional knowledge as input to a potential Design Based Adaptation Model for coastal settlements along the Australian coast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapidly urbanising coastal locations represent prototypes of future cities. While these "sea change" locations will face a range of issues associated with rapid growth such as infrastructure provision and enhancement of social capital, anticipated environmental impacts are likely to add significant challenges. Climate change is likely to have dramatic impacts on sea change communities through diminished potable water supplies, rising sea levels, storm surges, and increased intensity of flood events - with indirect impacts on health, financial sectors, and biodiversity. Given the inherent diversity within sea change communities with regard to age, culture, and socio-economic status there are likely to be differences in ways of adapting, the ability to adapt, and the desired direction of any changes. Cognizant of the potential enormity of climate change impacts, the need for rapid responses, and the diversity within communities, this paper proposes a participatory and transformative method to work with communities in responding to climate change and variability within rapidly urbanising coastal locations. The method focuses on determining probable futures for various communities of place and interest within sea change areas and aims to build the capacity for dynamic on-going learning to achieve those futures, both within and between the communities. Through this process community members may be empowered with dynamic and future-orientated learning skills that build upon community knowledge, innovation, and resilience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the perceptions on and adaptations to climate change impacts of 235 pangasius farmers in the Mekong Delta, Vietnam. Data were collected using semi-structured household surveys in six provinces, from three regions along the Mekong river branches. A Chi-Square test was used to determine the association between variables, and a logit regression model was employed to identify factors correlated with farmer’s perception and adaptation. Less than half of respondents were concerned about climate change and sought suitable adaptation measures to alleviate its impacts. Improving information on climate change and introducing early warning systems could improve the adaptive capacity of pangasius farmers, in particularly for those farmers, who were not concerned yet. Farmers relied strongly on technical support from government agencies, but farmers in the coastal provinces did not express the need for training by these institutions. This contrasting result requires further assessment of the effectiveness of adaptation measures such as breeding salinity tolerant pangasius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the degree of genetic exchange between subspecies and populations is vital for the appropriate management of endangered species. Blue whales (Balaenoptera musculus) have two recognized Southern Hemisphere subspecies that show differences in