4 resultados para climate appropriate clothing

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent and rapidity of global climate change is the major novel threatening process to biodiversity in the 21 st century. Globally, numerous studies suggest movement of biota to higher latitudes and altitudes with increasing empirical -evidence emerging. As biota responds to the direct and consequent effects of climate change the potential to profoundly affect natural systems (including the reserve system) of south-eastern Australia is becoming evident. Climate change is projected to accelerate major environmental drivers such as drought, fire and flood regimes. Is the reserve system sufficient for biodiversity conservation under a changing climate? Australia is topographically flat, biologically mega-diverse with high species endemism, and has the driest and most variable climate of any inhabited continent. Whilst the north-south orientation and aftitude gradient of eastern Australia's forests and woodlands provides some resilience to projected climatic change, this has been eroded since European settlement, particularly in the cool-moist Bassian zone of the south-east. Following settlement, massive land-use change for agriculture and forestry caused widespread loss and fragmentation of habitats; becoming geriatric in agricultural landscapes and artificially young in forests. The reserve system persists as an archipelago of ecological islands surrounded by land uses of varying compatibility with conservation and vulnerable to global warming. The capacity for biota to adapt is limited by habitat availability. The extinction risk is exacerbated. Re-examination of earlier analysis of ecological connectivity through biolink zones confirms biolinks as an appropriate risk management response within a broader suite of measures. Areas not currently in the reserve system may be critical to the value and ecological function of biological assets of the reserve system as these assets change. Ecological need and the rise of ecosystem services, combined with changing socio-economic drivers of land-use and social values that supported the expansion of the reserve system, all suggest biolink zones represent a new, necessary and viable multi-functional landscape. This paper explores some of the key ecological elements for restoration within biolink zones (and landscapes at large) particularly through currently agricultural landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the degree of genetic exchange between subspecies and populations is vital for the appropriate management of endangered species. Blue whales (Balaenoptera musculus) have two recognized Southern Hemisphere subspecies that show differences in

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Vietnam, culturing striped catfish makes an important contribution to the Mekong Delta's economy. Water level rise during rainy season and salt intrusion during dry season affect the water exchange and quality for this culture. Sea level rise as a consequence of climate change will worsen these influences. In this study, water level rise and salt water intrusion for three sea level rise (SLR) scenarios (i.e., +30, +50, and +75 cm) were simulated. The results showed that at SLR +50, the 3-m-flood level would spread downstream and threaten farms located in AnGiang, DongThap and CanTho provinces. Rising salinity levels for SLR +75 would reduce the window appropriate for the culture in SocTrang and BenTre provinces, and in TienGiang's coastal districts. Next to increasing dikes to reduce the impacts, the most tenable and least disruptive option to the farming community would be to shift to a salinity tolerant strain of catfish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are three key drivers of the biodiversity crisis: (1) the well known existing threats to biodiversity such as habitat loss, invasive pest species and resource exploitation; (2) direct effects of climate-change, such as on coastal and high elevation communities and coral reefs; and (3) the interaction between existing threats and climate-change. The third driver is set to accelerate the biodiversity crisis beyond the impacts of the first and second drivers in isolation. In this review we assess these interactions, and suggest the policy and management responses that are needed to minimise their impacts. Renewed management and policy action that address known threats to biodiversity could substantially diminish the impacts of future climate-change. An appropriate response to climate-change will include a reduction of land clearing, increased habitat restoration using indigenous species, a reduction in the number of exotic species transported between continents or between major regions of endemism, and a reduction in the unsustainable use of natural resources. Achieving these measures requires substantial reform of international, national and regional policy, and the development of new or more effective alliances between scientists, government agencies, non-government organisations and land managers. Furthermore, new management practices and policy are needed that consider shifts in the geographic range of species, and that are responsive to new information acquired from improved research and monitoring programs. The interactions of climate-change with existing threats to biodiversity have the potential to drive many species to extinction, but there is much that can be done now to reduce this risk.