3 resultados para clay matrix

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A nano-modified matrix based on an epoxy resin and montmorillonite (MMT) layered silicates, was successfully infiltrated through 10 ply of carbon fibre preform. A combined fabrication process of a vacuum assisted resin infusion method (VARIM) followed by a rapid heating rate and mechanical vibration during cure, facilitated the infiltration of the nano-modified matrix through the preform. This was achieved by dispersing the MMT clay in the resin and ensuring that the viscosity of the nano-modified matrix remained low during fabrication. SEM-EDX (energy dispersive X-ray spectroscopy) spectra showed that chemical constituents within MMT clay including silicon, aluminium and magnesium elements had permeated through the fibre preform and were detected throughout the laminate. A homogeneous resin/particle distribution was achieved with the size of clay particles ranging from 100 nm to 1 μm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work aims at finding a relationship between kinetic models of thermal degradation process with the physiochemical structure of epoxy-clay nanocomposites in order to understand its service temperature. In this work, two different types of modified clays, including clay modified with (3-aminopropyl)triethoxysilane (APTES) and a commercial organoclay, were covalently and non-covalently incorporated into epoxy matrix, respectively. The effect of different concentrations of silanized clay on thermal behaviour of epoxy nanocomposites were first investigated in order to choose the optimum clay concentration. Afterwards, thermal characteristics of the degradation process of epoxy nanocomposites were obtained by TGA analysis and the results were employed to determine the kinetic parameters using model-free isoconversional and model-fitting methods. The obtained kinetic parameters were used to model the entire degradation process. The results showed that the incorporation of the different modified clay into epoxy matrix change the mathematical model of the degradation process, associating with different orientations of clay into epoxy matrix confirming by XRD results. The obtained models for each epoxy nanocomposite systems were used to investigate the dependence of degradation rate and degradation time on temperature and conversion degree. Our results provide an explanation as to how the life time of epoxy and its nanocomposites change in a wide range of operating temperatures as a result of their structural changes.