73 resultados para circular cup drawing

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benchmark-4 is designed to predict wrinkling during cup drawing. Two different punch geometries have been selected in order to investigate the changes of wrinkling amplitude and wave. To study the effect of material on wrinkling, two distinct materials including AA 5042 and AKDQ steel are also considered in the benchmark. Problem description, material properties, and simulation reports with experimental data are summarized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction of more than four ears in a cup drawing process can be successfully achieved by considering r-value and stress directionalities. Yld2004-18p based on associated flow rule and Yld2000-2D based on non-associated flow rule are the examples. The former, however, is more costly in terms of computational efficiency than the latter. In this work, an anisotropic constitutive model based on non-associated flow rule which combines two different functions, Hill (1948) and Yld2000-2d, is implemented to a user defined material model. The accuracy of the anisotropic directionalities (yield stresses and plastic strain ratios) is evaluated. Simulation of a mini-die cup drawing with a body stock alloy predicted eight ears, in good agreement with the experimental results. The use of Hill (1948) model for the yield function and Yld2000-2d for plastic potential under the framework of non-associated flow rule led to accurate prediction of up to eight ears at the lower computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wrinkling occurs when a blank is subjected to compressive stresses during the forming process as in the flange of a cup during drawing. Although the failure limit due to plastic flow localization can be simply defined by the FLC at each point of a continuum, the wrinkling limit cannot be defined with simple variables such as strain, stress, and thickness. Wrinkling is strongly affected by the mechanical properties of the sheet material, the geometry of the tools and blank, and contact conditions. The analysis of wrinkling initiation and growth is, therefore, difficult to perform due to the complex synergistic effects of the controlling parameters. Because of these difficulties, the study of wrinkling has generally been conducted case by case. A unique wrinkling criterion, which could be used effectively for various sheet forming processes, has not yet been proposed. There were many investigations on the effect of process parameters (BHF and friction) and geometry on wrinkling. However, there are few reported results on the influence of the material model on wrinkling. This paper shows how strain hardening and r-values affect wrinkle formation in its magnitude, initiation, and direction through the NUMISHEET2014 benchmark test for wrinkling during cup drawing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental studies into the effect of blank thickness on the deep drawing response of the coarse-grained and ultrafine-grained copper demonstrated the occurrence of a size effect: the dependence of the maximum load and the limit drawing ratio on the blank thickness in sub-millimetre range. A dislocation based constitutive model taking into account the thickness effects was used for numerical simulations of the process. It was demonstrated that the occurrence of the blank thickness effect is governed by the ratio of the blank thickness t to the grain size D of the material. Critical values of the t/. D ratio below which the size effect comes to bearing were determined. The obtained results can be seen as a demonstration of more general suitability of the model developed for predicting microforming operations with full account of the specimen or work-piece dimensions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of temperature on the forming behavior of an aluminum/polypropylene/aluminum (APA) sandwich sheet was studied. Shear and tensile tests were performed to determine the mechanical properties of the laminate and the component materials as a function of process temperature. The forming limit diagram (FLD) of the laminate was established for two different temperatures, and its springback behavior was examined in four-point bend and channel bend tests. Cup forming tests were performed at various test temperatures to determine the limiting drawing ratio (LDR) and the tendency for wrinkling at these temperatures. Although there was only a minor influence of temperature on the mechanical properties and the FLD values of the laminate, the bend test results reveal that springback can be reduced by forming at higher temperature. The decreasing strength of the core material with rising process temperature led to an increased tendency of the laminate to wrinkle in the heated cup drawing tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Car manufacturers are under pressure to reduce vehicle mass while maintaining comfort and passenger safety for current and future vehicles. To meet this demand the steel industry has developed Advanced High Strength Steels (AHSS) that promise higher strength and improved formability compared to conventional steel grades. Even though significant research has already been performed to evaluate the material properties and forming behaviour of most AHSS types, only a limited literature is available on their necking and fracture behaviour and the effect on formability. This paper examines and compares the thinning, necking and fracture behaviour of two AHSS and one conventional steel type, namely TRIP, DP and HSLA. Uniaxial, plane and biaxial strain conditions are investigated by tensile, cup drawing and stretch forming tests and by using numerical methods. The test results indicate that significant differences exist in necking and fracture behaviour between all three steel types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical modelling of deep drawing process is of value in preliminary process design to illustrate the influence of major variables including friction and strain hardening on punch loads, cup dimensions and process limits. In this study, analytical models including theoretical solution and a series of finite element models are developed to account for the influences of process parameters including friction coefficient, tooling geometry and material properties on deep drawing of metal cups. The accuracy of both the theoretical and finite element solutions is satisfactory compared with those from experimental work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A copper bar was drawn while a lead bar was extruded through a cyclically twisting die in a specifically designed experimental rig. The drawing/extrusion load fluctuated at the same frequency as that of die twisting. The load tended to be at a level of monotonic deformation when the die was changing direction. The degree of the reduction in load for both the drawing and extrusion processes depended on the deformation conditions and requires optimisation for industrial application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galvanneal steel is considered to be better for automotive applications than its counterpart, galvanized steel, mainly because of its superior coating and surface properties. Galvanneal steel is produced by hot dipping sheet steel in a bath of molten zinc with small, controlled, levels of aluminium, followed by annealing which creates a Fe-Zn intermetallic layer. This intermetallic layer of the coating improves spot weldability and improves subsequent paint appearance. However, if the microstructure of the coating is not properly controlled and forming parameters are not properly selected, wear of the coating could occur during stamping. Frictional sliding of the sheet between the tool surfaces results in considerable amount of coating loss. An Interstitial Free steel with a Galvanneal coating of nominally 60g/m2 was used for the laboratory experiments. Flat Face Friction (FFF) tests were performed with different forming conditions and lubricants to simulate the frictional sliding in stamping. Glow-Discharge Optical Emission Spectrometry (DG-OES) was used to measure the change in the coating thickness during sliding. Optical microscopy was considered for imaging the surfaces as well as an optical method to compare the changes in the coating thickness during the forming. The change to the Galvanneal coating thickness was found to be a function of forming parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general rooted tree drawing algorithm is designed in this paper. It satisfies the basic aesthetic criteria and can be well applied to binary trees. Given an area, any complex tree can be drawn within the area in users' favorite styles. The algorithm is efficient with O(LxNxlogN) time complexity and self-adaptive as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As information expands and comprehension becomes more complex, so the need increases to develop focused areas of knowledge and skill acquisition. However, as the number of specialty areas increases so the languages that define each separate knowledge base become increasingly remote. Hence, concepts and viewpoints that were once considered part of a whole become detached. This phenomenon is typical of the development of tertiary education, especially within professional oriented courses, where disciplines and sub-disciplines have grown further apart and the ability to communicate has become increasingly fragmented.
One individual and visionary who was well acquainted with the shortcomings of the piecemeal development between the disciplines was Professor Sir Edmond Happold, the leader of the prestigious group known as Structures 3 at Ove Arup and Partners, who were responsible for making happen some of the landmark buildings of their time, including Sydney Opera House and the Pompidou Centre, and the founding professor of the Bath school of Architecture and Civil Engineering in 1975. While still having a profound respect for the knowledge bases of the different professions within the building and construction industry, Professor Happold was also well aware of the extraordinary synergies in design and innovation which could come about when the disciplines of Architecture and Civil Engineering were brought together at the outset of the design process.
This paper discusses the rational behind Professor Happold’s cross-discipline model of education and reflects on the method, execution and pedagogical worth of the joint studio-based projects which formed a core aspect of the third year program at the School of Architecture and Civil Engineering at the Bath University.