2 resultados para circuit model

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a robust model and its simulation to investigate the performance of an AC propulsion system in a rail vehicle for directly returning the regenerative braking power to the feeder substation of an AC traction network. This direct returning method can be an efficient approach for energy recovery if the regenerative braking is reliably applied. However, it is shown that this method can cause undesired voltage fluctuations if the regenerative braking regime or braking location of the rail vehicle change. The load torque on the traction motor (TM) is precisely modelled when pure electrical braking is applied. Different states of the direct torque controlled inverter are modelled when the TM regenerates. A circuit model for the utility grid, load impedances and the traction network is developed to evaluate the network receptivity against the regenerated power. The dynamics of the electromagnetic torque and the fluctuations of the DC-link voltage are investigated for two operational conditions: changes on the regenerative braking regime and changes on the rail vehicle braking location. The results justify how the DC-link voltage dramatically fluctuates with variations of the rail vehicle's operation conditions, whereas the electromagnetic torque is maintained on optimum rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a comprehensive analytical subdomain model together with its field solutions for predicting the magnetic field distributions in surface-mounted permanent magnet (PM) machines. The tooth tips and slotting effects during open-circuit, armature reaction, and on-load conditions are considered when deriving the model and developing its solutions. The model derivations and field solutions are extended from a previous model, and can be applied to PM machines with any combinations of slot and pole numbers and any magnetization patterns in the magnets. This model is initially formulated according to Laplace's and Poisson's equations in 2-D polar coordinates by the separation of variables technique in four subdomains, such as magnet, airgap, winding slots, and slot-openings. The field solution of each subdomain is obtained applying the appropriate boundary conditions and interface conditions between every two subdomains, respectively, which can precisely account for the mutual influence between slots. Finite element analysis (FEA) is later deployed to validate the analytical results in a surface-mounted PM machine that has nonoverlapping winding arrangement. For validation purposes, PM machines having 3-slot/2-pole with parallel magnetization and 12-slot/10-pole with either parallel or radial magnetizations are used for comparisons. Computation of global quantities for the motor which include the phase back-EMF and cogging torque is also included. The results indicate that the proposed analytical model can accurately predict the magnetic field distributions in each subdomain and the motor's global quantities, which are in good agreement with those obtained from the FEA.