24 resultados para cingulate gyrus

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

High frequency deep brain stimulation (DBS) of the lateral habenula (LHb) reduces symptoms of depression in severely treatment-resistant individuals. Despite the observed therapeutic effects, the molecular underpinnings of DBS are poorly understood. This study investigated the efficacy of high frequency LHb DBS (130Hz; 200μA; 90μs) in an animal model of tricyclic antidepressant resistance. Further, we reported DBS mediated changes in Ca(2+)/calmodulin-dependent protein kinase (CaMKIIα/β), glycogen synthase kinase 3 (GSK3α/β) and AMP-activated protein kinase (AMPK) both locally and in the infralimbic cortex (IL). Protein expressions were then correlated to immobility time during the forced swim test (FST). Antidepressant actions were quantified via FST. Treatment groups comprised of animals treated with adrenocorticotropic hormone alone (ACTH; 100μg/day, 14days, n=7), ACTH with active DBS (n=7), sham DBS (n=8), surgery only (n=8) or control (n=8). Active DBS significantly reduced immobility in ACTH-treated animals (p<0.05). For this group, western blot results demonstrated phosphorylation status of LHb CaMKIIα/β and GSK3α/β significantly correlated to immobility time in the FST. Concurrently, we observed phosphorylation status of CaMKIIα/β, GSK3α/β, and AMPK in the IL to be negatively correlated with antidepressant actions of DBS. These findings suggest that activity dependent phosphorylation of CaMKIIα/β, and GSK3α/β in the LHb together with the downregulation of CaMKIIα/β, GSK3α/β, and AMPK in the IL, contribute to the antidepressant actions of DBS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Increased oxidative stress is thought to contribute to the pathophysiology of major depressive disorder (MDD), which is in part due to diminished levels of glutathione, the primary anti-oxidant of the brain. Oral administration of N-acetyl-cysteine (NAC) replenishes glutathione and has therefore been shown to reduce depressive symptoms. Proton magnetic spectroscopy (1H-MRS) that allows quantification of brain metabolites pertinent to both MDD and oxidative biology may provide some novel insights into the neurobiological effects of NAC, and in particular metabolite concentrations within the anterior cingulate cortex (ACC) are likely to be important given the key role of this region in the regulation of affect.

Objective: The aim of this study was to determine whether the metabolite profile of the ACC in MDD patients predicts treatment with adjunctive NAC versus placebo.

Methods: This study was nested within a multicentre, randomized, double-blind, placebo-controlled study of MDD participants treated with adjunctive NAC. Participants (n = 76) from one site completed the spectroscopy component at the end of treatment (12 weeks). Spectra from a single-voxel in the ACC were acquired and absolute concentrations of glutamate (Glu), glutamate-glutamine (Glx), N-acetyl-aspartate (NAA) and myo-inositol (mI) were obtained. Binary logistic regression analysis was performed to determine whether metabolite profiles could predict NAC versus placebo group membership.

Results: When predicting group outcome (NAC or placebo), Glx, NAA and mI were a significant model, and had 75% accuracy, while controlling for depression severity and sex. However, the Glu, NAA and mI profile was only predictive at a trend level, with 68.3% accuracy. For both models, the log of the odds of a participant being in the NAC group was positively related to NAA, Glx and Glu levels and negatively related to mI levels.

Conclusion: The finding of higher Glx and NAA levels being predictive of the NAC group provides preliminary support for the putative anti-oxidative role of NAC in MDD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two little noticed cases in which William Macewen used symptoms of visual agnosia to plan brain surgery on the angular gyrus are reviewed and evaluated. Following a head injury, Macewen’s first patient had an immediate and severe visual object agnosia that lasted for about 2 weeks. After that he gradually became homicidal and depressed and it was for those symptoms that Macewen first saw him, some 11 months after the accident. From his examination, Macewen concluded that the agnosia clearly indicated a lesion in “the posterior portion of the operculum or in the angular gyrus.” When he removed parts of the internal table that had penetrated those structures the homicidal impulses disappeared. Macewen’s second patient was seen for a chronic middle ear infection and, although neither aphasic nor deaf, was ‘word deaf.’ Slightly later he became ‘psychically blind’ as well. Macewen suspected a cerebral abscess pressing on both the angular gyrus and the first temporal convolution. A large subdural abscess was found there and the symptoms disappeared after it was treated. The patients are discussed and Macewen’s positive results analysed in the historical context of the dispute over the proposed role of the angular gyrus as the visual centre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autism spectrum disorders (ASDs) are developmental conditions characterized by deficits in social interaction, verbal and nonverbal communication and obsessive/stereotyped patterns of behaviour. Although there is no reliable neurophysiological marker associated with ASDs, dysfunction of the parieto-frontal mirror neuron system has been suggested as a disturbance linked to the disorder. Mirror neurons (MNs) are visuomotor neurons which discharge both when performing and observing a goal directed action. Research suggests MNs may have a role in imitation, empathy, theory of mind and language. Although the research base is small, evidence from functional MRI, transcranial magnetic stimulation, and an electroencephalographic component called the mu rhythm suggests MNs are dysfunctional in subjects with ASD. These deficits are more pronounced when ASD subjects complete tasks with social relevance, or that are emotional in nature. Promising research has identified that interventions targeting MN related functions such as imitation can improve social functioning in ASDs. Boosting the function of MNs may improve the prognosis of ASDs, and contribute to diagnostic clarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural abnormality of planum temporale (PT), a part of the superior temporal heteromodal association cortex involved in auditory and language processing, has been implicated in the pathophysiology of schizophrenia. However, its relationship to clinical manifestations remains unclear. Magnetic resonance images were obtained from 17 right-handed Japanese men with schizophrenia and from 22 age-, handedness-, and parental socioeconomic-status-matched healthy Japanese men in order to manually evaluate grey matter volumes of Heschl’s gyrus (HG) and PT. Psychiatric symptoms were assessed using positive and negative syndrome scale among the patients. Compared with healthy participants, patients with schizophrenia were associated with a statistically significant PT grey matter volume reduction without left or right lateralization, whereas HG volume was preserved. Smaller right PT volume was significantly correlated with more severe delusional behaviour in the patients. Previous investigations have focused on smaller-than-normal left PT in the pathophysiology of schizophrenia; however, the present results suggest a possible role of the right PT, which is involved in social cognition such as understanding the intentions of others, in the production of psychotic experiences in patients with schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cocaine addiction involves persistent deficits to unlearn previously rewarded response options, potentially due to neuroadaptations in learning-sensitive regions. Cocaine-targeted prefrontal systems have been consistently associated with reinforcement learning and reversal deficits, but more recent interspecies research has raised awareness about the contribution of the cerebellum to cocaine addiction and reversal. We aimed at investigating the link between cocaine use, reversal learning and prefrontal, insula and cerebellar gray matter in cocaine-dependent individuals (CDIs) varying on levels of cocaine exposure in comparison with healthy controls (HCs). Twenty CDIs and 21 HCs performed a probabilistic reversal learning task (PRLT) and were subsequently scanned in a 3-Tesla magnetic resonance imaging scanner. In the PRLT, subjects progressively learn to respond to one predominantly reinforced stimulus, and thenmust learn to respond according to the opposite, previously irrelevant, stimulus-reward pairing. Performance measureswere errors after reversal (reversal cost), and probability of maintaining response after errors. Voxel-based morphometry was conducted to investigate the association between gray matter volume in the regions of interest and cocaine use and PRLT performance. Severity of cocaine use correlated with gray matter volume reduction in the left cerebellum (lobule VIII), while greater reversal cost was correlated with gray matter volume reduction in a partially overlapping cluster (lobules VIIb and VIII). Right insula/inferior frontal gyrus correlated with probability of maintaining response after errors. Severity of cocaine use detrimentally impacted reversal learning and cerebellar gray matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extent to which brain structural abnormalities might serve as neurobiological endophenotypes that mediate the link between the variation in the promoter of the serotonin transporter gene (5-HTTLPR) and depression is currently unknown. We therefore investigated whether variation in hippocampus, amygdala, orbitofrontal cortex (OFC) and anterior cingulate cortex volumes at age 12 years mediated a putative association between 5-HTTLPR genotype and first onset of major depressive disorder (MDD) between age 13–19 years, in a longitudinal study of 174 adolescents (48% males). Increasing copies of S-alleles were found to predict smaller left hippocampal volume, which in turn was associated with increased risk of experiencing a first onset of MDD. Increasing copies of S-alleles also predicted both smaller left and right medial OFC volumes, although neither left nor right medial OFC volumes were prospectively associated with a first episode of MDD during adolescence. The findings therefore suggest that structural abnormalities in the left hippocampus may be present prior to the onset of depression during adolescence and may be partly responsible for an indirect association between 5-HTTLPR genotype and depressive illness. 5-HTTLPR genotype may also impact upon other regions of the brain, such as the OFC, but structural differences in these regions in early adolescence may not necessarily alter the risk for onset of depression during later adolescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bipolar disorder is a common, chronic, and complex mental illness. Bipolar disorder is frequently comorbid with primary mitochondrial and metabolic disorders, and studies have implicated mitochondrial dysfunction in its pathophysiology. In the brains of people with bipolar disorder, high-energy phosphates are decreased, lactate is elevated and pH decreased, which together suggest a shift toward glycolysis for energy production. Furthermore, oxidative stress is increased, and calcium signalling dysregulated. Additionally there is downregulation of the expression of mitochondrial complexes, especially complex I. The therapeutic effects of some bipolar disorder drugs have recently been shown to be related to these mechanisms. In this review we will evaluate current research on the interactions between mitochondrial dysfunction and bipolar disorder pathology. We will then appraise the current literature describing the effects of bipolar disorder drugs on mitochondrial function, and discuss ramifications for future research.