7 resultados para chrondrite matrix phases

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al/MgAl2O4 in situ metal matrix composites have been synthesized using value-added silica sources (microsilica and rice husk ash) containing ~97% SiO2 in Al-5 wt.% Mg alloy. The thermodynamics and kinetics of MgAl2O4 formation are discussed in detail. The MgO and MgAl2O4 phases were found to dominate in microsilica (MS) and rice husk ash (RHA) value-added composites, respectively, during the initial stage of holding the composites at 750 °C. A transition phase between MgO and MgAl2O4 was detected by the scanning electron microscopy and energy-dispersive spectroscopy (SEM–EDS) analysis of the particles extracted from the composite using 25% NaOH solution. This confirms that MgO is gradually transformed to MgAl2O4 by the reaction 3SiO2(s)+2MgO(s)+4Al(l)→2MgAl2O4(s)+3Si(l). The stoichiometry of MgAl2O4, n, computed by a new methodology is between 0.79 and 1.18. The reaction between the silica sources and the molten metal stopped after 55% of the silica source was consumed. A gradual increase in mean MgAl2O4 crystallite size, D, from 24 to 36 nm was observed in the samples held for 10 h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of Al2O3, MgAl2O4, and MgO has been widely studied in different Al base metal matrix composites, but the studies on thermodynamic aspects of the Al2O3/ MgAl2O4/MgO phase equilibria have been limited to few systems such as Al/Al2O3 and Al/SiC. The present study analyzes the Al2O3/MgAl2O4 and MgAl2O4/MgO equilibria with respect to the temperature and the Mg content in Al/SiO2 system using an extended Miedema model. There is a linear and parabolic variation in Mg with respect to the temperature for MgAl2O4/MgO and Al2O3/MgAl2O4 equilibria, respectively, and the influence of Si and Cu in the two equilibria is not appreciable. The experimental verification has been limited to MgAl2O4/MgO equilibria due to the high Mg content (≥0.5 wt pct) required for composite processing. The study has been carried out on two varieties of Al/SiO2 composites, i.e., Al/Silica gel and Al/Micro silica processed by liquid metallurgy route (stir casting route). MgO is found to be more stable compared to MgAl2O4 at Mg levels ≥5 and 1 wt pct in Al/Silica gel and Al/Micro silica composites, respectively, at 1073 K. MgO is also found to be more stable at lower Mg content (3 wt pct) in Al/Silica gel composite with decreasing particle size of silica gel from 180 micron to submicron and nanolevels. The MgO to MgAl2O4 transformation has taken place through a series of transition phases influenced by the different thermodynamic and kinetic parameters such as holding temperature, Mg concentration in the alloy, holding time, and silica particle size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon black (CB) fillers were used to study the feasibility of achieving multiple percolation using an immiscible (polar) polymer blend matrix. By tailoring the morphology of the insulating dual phase matrix it has been shown that the percolation threshold (Фc) can be reduced over single-phase matrices. Cocontinuity in the polymer matrix is important in reducing Фc by either preferentially isolating the conducting filler at the interface of the two phases or within one particular continuous phase of the matrix thereby forming a continuous conducting network within a continuous network (multiple percolation). Actual melt processing time has been found to influence the dispersion of the fillers and hence Фc. Polarity of the matrix as well as the processing method has also been found to influence the dispersion of the filler within the host polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multidimensional high-performance liquid chromatography separations of the complex sample matrix found in café espresso coffee were completed on the propyl phenyl and butyl phenyl columns that contain 3 and 4 carbon atoms in the spacer chain, respectively. Phenyl type stationary phases are able to undergo unique π–π interactions with aromatic compounds. Previous works have found that there are differences in retention characteristics between these chain lengths and this was explored further here. It was found that when analysing the separations by quadrants, using a geometric approach to factor analysis and by measuring the normalised mean radius, subtle differences in the separations were observed and the butyl phenyl phase was more selective for the high to medium polarity species. However, there was very little difference in separation behaviour for the hydrophobic components within the coffee sample. Overall, the analysis of the entire separation showed very little difference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The addition of up to 4 mol% of the strong acids, trifluoromethane sulfonic acid (TfOH) and bis-trifluoromethanesulfonyl imide [HN(Tf) 2], to the organic ionic plastic crystal (OIPC) [Choline][DHP] has been shown to dramatically increase the ionic conductivity by up to three orders of magnitude whilst still retaining the crystalline structure of the OIPC matrix. This enhanced proton diffusivity led to a significant proton reduction reaction in the electrochemical measurements. Powder XRD and DSC thermal analyses strongly suggest that these mixtures are single phase, crystalline materials. The work here also confirms that an increase in TfOH acid concentration (8 mol% and 12 mol%) results in a higher content of the amorphous phase as previously observed for the H 3PO 4/[Choline][DHP] system. © 2012 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodegradable magnesium-zirconia-calcium (Mg-Zr-Ca) alloy implants were coated with Collagen type-I (Coll-I) and assessed for their rate and efficacy of bone mineralization and implant stabilization. The phases, microstructure and mechanical properties of these alloys were analyzed using X-ray diffraction (XRD), optical microscopy and compression test, respectively, and the corrosion behavior was established by their hydrogen production rate in simulated body fluid (SBF). Coll-I extracted from rat tail, and characterized using fourier transform infrared (FT-IR) spectroscopy, was used for dip-coating the Mg-based alloys. The coated alloys were implanted into the femur bones of male New Zealand white rabbits. In vivo bone formation around the implants was quantified by measuring the bone mineral content/density (BMC/BMD) using dual-energy X-ray absorptiometry (DXA). Osseointegration of the implant and new bone mineralization was visualized by histological and immunohistochemical analysis. Upon surface coating with Coll-I, these alloys demonstrated high surface energy showing enhanced performance as an implant material that is suitable for rapid and efficient new bone tissue induction with optimal mineral content and cellular properties. The results demonstrate that Coll-I coated Mg-Zr-Ca alloys have a tendency to form superior trabecular bone structure with better osteoinduction around the implants and higher implant secondary stabilization, through the phenomenon of contact osteogenesis, compared to the control and uncoated ones in shorter periods of implantation. Hence, Coll-I surface coating of Mg-Zr-Ca alloys is a promising method for expediting new bone formation in vivo and enhancing osseointegration in load bearing implant applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Boron nitride nanotube reinforcement at titanium matrix composite increased the strength of the composite both at room and high temperature. At higher sintering temperature, nanotube reacts with titanium first forming TiB2 transition phase at the interface and then in-situ formed TiB phases in the matrix, which is also responsible for enhanced mechanical properties.