31 resultados para ceramic

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A VHF method (30-300 MHz) is applied to identify faults and defects in ceramic insulators. Insulators which exhibit internal cracks and fractures are used as test samples. Different artificial conditions are introduced to the test samples according to the IEC 507 standard under wet and dry conditions. Using a cascading signal processing technique and analysis methods such as FFT and fractal analysis, VHF signals acquired by digital scope are processed and analyzed. This study indicates that the fractal dimension can be used as an effective tool to isolate the common faulty conditions found on the ceramic insulators. The results from this study strongly support the prospect of using a VHF method to monitor the physical condition of ceramic insulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical properties of aluminium foams can be improved by matrix reinforcement and resin-impregnation methods. In the present study, aluminium foams were reinforced by both ceramic particulate reinforcing of the aluminium matrix and resin-impregnating pores. The mechanical properties and the energy absorption of the reinforced aluminium foams were investigated by dynamic and quasi-static compression. Results indicated that the ceramic particle additions of CBN, SiC and B4C in aluminium foams increase the peak stress, elastic modulus and energy absorption of the aluminium foams, under both conditions of dynamic and quasi-static compression. Moreover, the aluminium foams with and without ceramic particle additions exhibited obvious strain rate sensitivity during dynamic compression. Furthermore, the resin-impregnation improves the mechanic properties and energy absorption of aluminium foams significantly. However, aluminium foams with resin-impregnation showed negligible strain rate sensitivity under dynamic compression. It is reported that both the ceramic particle addition and resin-impregnation can be effective techniques to improve the mechanical and the energy absorption properties of aluminium foams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO, TiO2 and CeO2 are known as UV-shielding ceramic materials that have advantages over organic UV absorbers for their photo-stability and non-hazardous nature to human bodies. However, they normally cause low transparency in the visible-light range due to light scattering by large particles, which is undesirable for many transparent UV-blocking applications in cosmetic and plastic industries. Light-scattering efficiency of particles can be drastically reduced by decreasing the particle sizes down below 100 nm. This paper reviews recent investigation on the synthesis of ZnO and CeO2 nanoparticles by mechanochemical processing. The resulting particles had a significantly low degree of agglomeration, having mean particle sizes of ~ 25 nm and ~ 10 nm, respectively. The aqueous suspensions of the nanoparticles showed strong absorption in the UV-light range and high transmittance in the visible-light range. Mechanochemical processing offers the possibility of industrial-scale production of transparent UV-shielding ceramic particles for many applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A techno-historical study of a commercial initiative by 13th century Thai village potters to produce domestic stoneware ceramics. However their enterprise's success attracted the exploitative interest of regional trade entrepreneurs whose specialisation of the industry created a fatal lack of efficiency and flexibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-particle oxide fillers including TiO2, SiO2 and Al2O3 have previously been shown to have a significant affect on the properties of both polymer and polymer gel electrolytes. In some cases, conductivity increases of one order of magnitude have been reported in crystalline PEO–base complexes. In this work, we report the effects of TiO2 and SiO2 on a poly(Li-AMPS)-based gel polyelectrolyte. Impedance spectroscopy and pfg-NMR spectroscopy indicates an increase in the number of available charge carriers with the addition of filler. An ideal amount of ceramic filler has been identified, with additional filler only saturating the system and reducing the conductivity below that of the pristine polyelectrolyte system. SEM micrographs suggest a model whereby the filler interacts readily with the sulfonate group; the surface area of the filler being an important factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of a lithium ion conducting ceramic with a lithium salt based polymer electrolyte matrix are described. Conductivity measurements as a function of the lithium ion conducting ceramic phase content in the composite show that there is a significant increase in conductivity at approximately 40 vol% of the ceramic. The room temperature conductivity above this ceramic content is enhanced by at least 100% over that of the polymer electrolyte phase alone. It is believed that this additional contribution is substantially lithium ion conduction. The major barrier to ion-motion in these materials appears to be the interface between the polymer and ceramic. This interfacial resistance is strongly moisture-sensitive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composites of a Li+ ion-conducting ceramic powder in a polyether-based elastomeric electrolyte matrix are described. At 66 wt.% of ceramic the composite can be prepared as a paste and cured into a coherent material having useful elastic and tensile properties. The total conductivity of the composite was found to be (1.9 ± 0.2) × 10−4 S cm−1 at 40 °C which was approximately 1 order of magnitude higher than the polymer electrolyte component alone. The result was also approximately 1 order of magnitude higher than the total conductivity of the ceramic powders tested in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite electrolytes of the lithium-ion-conducting ceramic Li1.3Al0.3Ti1.7(PO4)3 and polyetherurethane/lithium triflate polymer electrolyte have been prepared. Microscopy has shown that adhesion between the ceramic and polymer phases is poor, with gaps up to 1 μm at the interface. When dry, the composites are no more conductive than the pure polymer electrolyte. Exposing the samples to the vapour of solvents such as DMF, acetonitrile or water produces a significant increase in conductivity, over and beyond simple plasticization of the polymer. Pretreating the ceramic with a compatibilizing agent improves adhesion at the interface with the polymer, but decreases overall conductivity in the case investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen production by air separation is of great importance in both environmental and industrial processes as most large scale clean energy technologies require oxygen as feed gas. Currently the conventional cryogenic air separation unit is a major economic impediment to the deployment of these clean energy technologies with carbon capture (i.e. oxy-fuel combustion ). Dense ceramic perovskite membranes are envisaged to replace the cryogenics and reduce O2 production costs by 35% or more; which can significantly cut the energy penalty by 50% when integrated in oxy-fuel power plant for CO2 capture. This paper reviews the current progress in the development of dense ceramic membranes for oxygen production. The principles, advantages or disadvantages, and the crucial problems of all kinds of membranes are discussed. Materials development, optimisation guidelines and suggestions for future research direction are also included. Some areas already previously reviewed are treated with less attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of ceramic membranes with pore sizes of 0.05 and 0.10 mm in purifying limed and partially clarified sugar cane juice was investigated under different operating conditions. From various operating conditions and strategies, switching off the permeate for 5 seconds for every 5 minutes (S5sT5 m) by an automated control valve provided higher flux. From the three pH experiments conducted on the 0.05 mm membrane, the best performance was observed at a pH of 7.5. Amongst the four fouling models tested, the cake filtration model fitted the performance of both membranes with higher accuracy at a transmembrane pressure of 0.5 bar. Filtering the cane juice through the membrane reduced the turbidity by 99.7%, color by 15%, and the starch concentration by 80% as well as increased the purity by 1.4%. The effective cleaning chemical composition from experimental results showed that 1% NaOH and 3000 ppm NaOCl solution performed the best but only for the experiments that were treating limed and partially clarified juice at pH 7.5.