18 resultados para cell-penetrating peptides

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A) against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH) cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells), and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid) nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Survivin is a member of the inhibitor-of-apoptosis (IAP) family which is widely expressed by many different cancers. Overexpression of survivin is associated with drug resistance in cancer cells, and reduced patient survival after chemotherapy and radiotherapy. Agents that antagonize the function of survivin hold promise for treating many forms of cancer. The purpose of this study was to investigate whether a cell-permeable dominant-negative survivin protein would demonstrate bioactivity against prostate and cervical cancer cells grown in three dimensional culture.

RESULTS: A dominant-negative survivin (C84A) protein fused to the cell penetrating peptide poly-arginine (R9) was expressed in E. coli and purified by affinity chromatography. Western blot analysis revealed that dNSurR9-C84A penetrated into 3D-cultured HeLa and DU145 cancer cells, and a cell viability assay revealed it induced cancer cell death. It increased the activities of caspase-9 and caspase-3, and rendered DU145 cells sensitive to TNF-α via by a mechanism involving activation of caspase-8.

CONCLUSIONS: The results demonstrate that antagonism of survivin function triggers the apoptosis of prostate and cervical cancer cells grown in 3D culture. It renders cancer cells sensitive to the proapoptotic affects of TNF-α, suggesting that survivin blocks the extrinsic pathway of apoptosis. Combination of the biologically active dNSurR9-C84A protein or other survivin antagonists with TNF-α therapy warrants consideration as an approach to cancer therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In plants, as in vertebrates, natriuretic peptide (NP) hormones can influence water and solute homeostasis. Here we demonstrate that a synthetic peptide identical to the C-terminus (amino acids 99–126) of the rat atrial natriuretic peptide (rANP) modulates osmotically induced swelling of mesophyll cell protoplasts (MCPs) in a concentration and time-dependent manner. Osmotically-induced volume changes in MCPs are enhanced by plant extracts with NP immunoreactivity and this effect is concentration-dependent. In contrast, pre-treatment of the plant extracts with rabbit anti-human ANP (99–126) antiserum suppresses enhanced osmoticum-induced swelling. Isolated plant peptides (irPNP) that have been immunoaffinity purified with rabbit anti-human ANP (99–126) antiserum also enhance osmotically-induced swelling. While rANP and irPNP cause increases in cGMP levels in MCPs, elevated cGMP levels do not cause increases in osmoticum-dependent swelling but exert an inhibitory effect. These findings are consistent with a NP-dependent, cGMP-independent effect on plant cell volume regulation and a role in homeostasis for peptides that are recognized by antibodies directed against the C-terminus of vertebrate ANPs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accumulation of beta amyloid (Aβ) in the brain is central to the pathogenesis of Alzheimer's disease. Aβ can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Aβ binding to membranes. Aβ peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Aβ peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Aβ peptides and their membrane binding. 'Ageing' the Aβ peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Aβ analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Aβ to purified plasma membrane preparations but also reduced Aβ toxicity. The results support the view that Aβ toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Aβ-membrane binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natriuretic peptides (NP) were first identified in animals where they play a role in the regulation of salt and water balance. This regulation is partly mediated by intracellular changes in cyclic GMP (cGMP). NP immunoanalogues occur in many plants and have been isolated, with two NP encoding genes characterised in Arabidopsis thaliana L. (AtPNP-A and AtPNP-B). Part of AtPNP-A contains the region with homology to human atrial (A)NP. We report here on the effects of recombinant AtPNP-A and smaller synthetic peptides within the ANP-homologous region with a view to identifying the biologically active domain of the molecule. Furthermore, we investigated interactions between AtPNP-A and the hormone, abscisic acid (ABA). ABA does not significantly affect Arabidopsis mesophyll protoplast volume regulation, whereas AtPNP-A and synthetic peptides promote water uptake into the protoplasts causing swelling. This effect is promoted by the membrane permeable cGMP analogue, 8-Br-cGMP, and inhibited by guanylate cyclase inhibitors indicating that increases in cGMP are an essential component of the plant natriuretic peptides (PNP) signalling cascade. ABA does not induce cGMP transients and does not affect AtPNP-A dependent cGMP increases, hence the two regulators differ in their second messenger signatures. Interestingly, AtPNP-A significantly delays and reduces the extent of ABA stimulated stomatal closure that is also based on cell volume regulation. We conclude that a complex interplay between observed PNP effects (stomatal opening and protoplast swelling) and ABA is likely to be cell type specific.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we demonstrate that compounds that promote stomatal opening such as kinetin, atrial natriuretic peptide (ANP) and plant natriuretic peptide immunoanalogues (irPNP) significantly elevate cGMP in guard cell protoplasts. Stomata opened by irPNP are induced to close in the presence of the guanylate cyclase inhibitor, LY 83583. The effect of cGMP on stomatal opening appears to be linked with Ca2+ levels. ANP, irPNP and 8-Br-cGMP all induce stomatal opening and this is inhibited by compounds that lower intracellular Ca2+ levels such as ethylene glycol bis(β-aminoethyl ether) N,N,N’,N’-tetraacetic acid (EGTA), ruthenium red and procaine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alzheimer’s disease Aβ peptide can increase the levels of cell-associated amyloid precursor protein (APP) in vitro. To determine the specificity of this response for Aβ and whether it is related to cytotoxicity, we tested a diverse range of fibrillar peptides including amyloid-β (Aβ), the fibrillar prion peptides PrP106–126 and PrP178–193 and human islet-cell amylin. All these peptides increased the levels of APP and amyloid precursor-like protein 2 (APLP2) in primary cultures of astrocytes and neurons. Specificity was shown by a lack of change to amyloid precursor-like protein 1, τ-1 and cellular prion protein (PrPc) levels. APP and APLP2 levels were elevated only in cultures exposed to fibrillar peptides as assessed by electron microscopy and not in cultures treated with non-fibrillogenic peptide variants or aggregated lipoprotein. We found that PrP106–126 and the non-toxic but fibril-forming PrP178–193 increased APP levels in cultures derived from both wild-type and PrPc-deficient mice indicating that fibrillar peptides up-regulate APP through a non-cytotoxic mechanism and irrespective of parental protein expression. Fibrillar PrP106–126 and Aβ peptides bound recombinant APP and APLP2 suggesting the accumulation of these proteins was mediated by direct binding to the fibrillated peptide. This was supported by decreased APP accumulation following extensive washing of the cultures to remove fibrillar aggregates. Pre-incubation of fibrillar peptide with recombinant APP18–146, the putative fibril binding site, also abrogated the accumulation of APP. These findings show that diverse fibrillogenic peptides can induce accumulation of APP and APLP2 and this mechanism could contribute to pathogenesis in neurodegenerative disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natriuretic peptides are bioactive proteins. In plants, biochemical and physiological studies on these molecules has now revealed that they influence stomatal opening, cell volume and the activity of membrane pumps and their localisation within vascular tissues. Thus they have major roles in maintaining water and solute homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A long-standing question in the field of immunology concerns the factors that contribute to Th cell epitope immunodominance. For a number of viral membrane proteins, Th cell epitopes are localized to exposed protein surfaces, often overlapping with Ab binding sites. It has therefore been proposed that Abs on B cell surfaces selectively bind and protect exposed protein fragments during Ag processing, and that this interaction helps to shape the Th cell repertoire. While attractive in concept, this hypothesis has not been thoroughly tested. To test this hypothesis, we have compared Th cell peptide immunodominance in normal C57BL/6 mice with that in C57BL/6MT/MT mice (lacking normal B cell activity). Animals were first vaccinated with DNA constructs expressing one of three different HIV envelope proteins, after which the CD4 T cell response profiles were characterized toward overlapping peptides using an IFN- ELISPOT assay. We found a striking similarity between the peptide response profiles in the two mouse strains. Profiles also matched those of previous experiments in which different envelope vaccination regimens were used. Our results clearly demonstrate that normal Ab activity is not required for the establishment or maintenance of Th peptide immunodominance in the HIV envelope response. To explain the clustering of Th cell epitopes, we propose that localization of peptide on exposed envelope surfaces facilitates proteolytic activity and preferential peptide shuttling through the Ag processing pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigen-specific T cell receptors (TCRs) recognise complexes of immunogenic peptides (p) and major histocompatibility complex (MHC) glycoproteins. Responding T cell populations show profiles of preferred usage (or bias) toward one or few TCRβ chains. Such skewing is also observed, though less commonly, in TCRα chain usage. The extent and character of clonal diversity within individual, antigen-specific T cell sets can be established by sequence analysis of the TCRVβ and/or TCRVα CDR3 loops. The present review provides examples of such TCR repertoires in prominent responses to acute and persistent viruses. The determining role of structural constraints and antigen dose is discussed, as is the way that functionally and phenotypically distinct populations can be defined at the clonal level. In addition, clonal dissection of “high” versus “low” avidity, or “central” versus “effector” memory sets provides insights into how these antigen specific T cell responses are generated and maintained. As TCR diversity potentially influences both the protective capacity of CD8+ T cells and the subversion of immune control that leads to viral escape, analysing the spectrum of TCR selection and maintenance has implications for improving the functional efficacy of T cell responsiveness and effector function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influenza virus-specific CD8+ T cells generally recognize peptides derived from conserved, internal proteins that are not subject to antibody-mediated selection pressure. Prior exposure to any one influenza A virus (H1N1) can prime for a secondary CD8+ T cell response to a serologically different influenza A virus (H3N2). The protection afforded by this recall of established CD8+ T cell memory, although limited, is not negligible. Key characteristics of primary and secondary influenza-specific host responses are probed here with recombinant viruses expressing modified nucleoprotein (NP) and acid polymerase (PA) genes. Point mutations were introduced into the epitopes derived from the NP and PA such that they no longer bound the presenting H2Db MHC class I glycoprotein, and reassortant H1N1 and H3N2 viruses were made by reverse genetics. Conventional (C57BL/6J, H2b, and Ig+/+) and Ig-/- (muMT) mice were more susceptible to challenge with the single NP [HKx31 influenza A virus (HK)-NP] and PA (HK-PA) mutants, but unlike the Ig-/- mice, Ig+/+ mice were surprisingly resistant to the HK-NP/-PA double mutant. This virus was found to promote an enhanced IgG response resulting, perhaps, from the delayed elimination of antigen-presenting cells. Antigen persistence also could explain the increase in size of the minor KbPB1703 CD8+ T cell population in mice infected with the mutant viruses. The extent of such compensation was always partial, giving the impression that any virus-specific CD8+ T cell response operates within constrained limits. It seems that the relationship between protective humoral and cellular immunity is neither simple nor readily predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cathelicidins secreted in milk may be central to autocrine feedback in the mammary gland for optimal development in addition to conferring innate immunity to both the mammary gland and the neonate. This study exploits the unique reproductive strategy of the tammar wallaby (Macropus eugenii) model to analyse differential splicing of cathelicidin genes and to evaluate the bactericidal activity and effect of the protein on mammary epithelial cell proliferation. Two linear peptides, Con73 and Con218, derived from the heterogeneous carboxyl end of cathelicidin transcripts, MaeuCath1 and MaeuCath7 respectively, were evaluated for antimicrobial activity. Both Con73 and Con218 significantly inhibited the growth of Staphylococcus aureus, Pseudomonas aureginosa, Enterococcus faecalis and Salmonella enterica. In addition both MaeuCath1 and MaeuCath7 stimulated proliferation of primary tammar wallaby mammary epithelial cells (WallMEC). Lactation-phase specific alternate spliced transcripts were determined for MaeuCath1 showing utilisation of both antimicrobial and proliferative functions are required by the mammary gland and the suckled young. The study has shown for the first time that temporal regulation of milk cathelicidins may be crucial in antimicrobial protection of the mammary gland and suckled young and mammary cell proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanofibrous materials yielded by the self-assembly of peptides are rich in potential; particularly for the formation of scaffolds that mimic the landscape of the host environment of the cell. Here, we report a novel methodology to direct the formation of supramolecular structures presenting desirable amino acid sequences by the self-assembly of minimalist peptides which cannot otherwise yield the desired scaffold structures under biologically relevant conditions. Through the rational modification of the pK?, we were able to optimise ordered charge neutralised assembly towards in vivo conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanomaterials are rich in potential, particularly for the formation of scaffolds that mimic the landscape of the host environment of the cell. This niche arises from the spatial organization of a series of biochemical and biomechanical signals. Self-assembling peptides have emerged as an important tool in the development of functional (bio-)nanomaterials; these simple, easily synthesized subunits form structures which present the properties of these larger, more complex systems. Scaffolds based upon these nanofibrous matrices are promising materials for regenerative medicine as part of a new methodology in scaffold design where a "bottom-up" approach is used in order to simulate the native cellular milieu. Importantly, SAPs hold the potential to be bioactive through the presentation of biochemical and biomechanical signals in a context similar to the natural extracellular matrix, making them ideal targets for providing structural and chemical support in a cellular context. Here, we discuss a new methodology for the presentation of biologically relevant epitopes through their effective presentation on the surface of the nanofibers. Here, we demonstrate that these signals have a direct effect on the viability of cells within a three-dimensional matrix as compared with an unfunctionalized, yet mechanically and morphologically similar system. © 2014 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 102: 197-205, 2014.