6 resultados para cathodoluminescence

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a simple and effective approach for growing large-scale, high-density, and well-patterned conical boron nitride nanorods. A catalyst layer of Fe(NO3)3 was patterned on a silicon substrate by using a copper grid as a mask. The nanorods were grown via annealing milled boron carbide powders at 1300 °C in a flow of nitrogen gas. The as-grown nanorods exhibit uniform morphology and the catalyst pattern precisely defines the position of nanorod deposition. Cathodoluminescence (CL) spectra of the nanorods show two broad emission bands centered at 3.75 and 1.85 eV. Panchromatic CL images reveal clear patterned structure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

α-Al2O3 nanotubes were synthesized in bulk quantity by using simple physical evaporation of pure aluminum powders at 1000 °C. Field emission scanning electron microscopy and transmission electron microscopy observations show that the nanotubes have diameters smaller than 100 nm and lengths up to several microns. Cathodoluminescence measurements revealed a strong luminescence band in the wavelength range of 280–380 nm centered at 330 nm, which could be attributed to the oxygen vacancies in the α-Al2O3 nanotubes. Sacrificial template model is regarded as the possible formation mechanism of the nanotubes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZnO powder was mechanically milled in a ball mill. This procedure was found to greatly increase its evaporation ability. The anomalous evaporation behaviour was caused by the disordered structure of the milled material and was not related to the increase in its surface area after milling. ZnO nanowires were synthesized by evaporation of this milled precursor. Nanowires with smooth and rough surfaces were present in the sample; the latter morphology was dominant. A green emission band centred at 510 nm was dominant in the cathodoluminescence spectrum of the nanowires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

De-alloying of S-phase in AA2024-T3 in the presence chlorides, is well-known. However, it is unclear how rare earth mercaptoacetate inhibitors affect this process when immersed in a 0.1. M NaCl solution. This paper analyses data obtained using EPMA on AA2024-T3 surfaces before and after a 16. min immersion period. Cerium and praseodymium mercaptoacetate inhibited the de-alloying process of S-phase particles. Although no significant change in composition was observed for cathodic intermetallics, each appeared to participate in local corrosion reactions as evidenced by the development of surface oxides. Clustering between S-phase and one of the Cu-containing intermetallic domains was also evident.