11 resultados para carbon cycle

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photochemical degradation of dissolved organic matter (DOM) can influence food webs by altering the availability of carbon to microbial communities, and may be particularly important following periods of high DOM input (e.g. flooding of forested floodplains). Iron oxides can facilitate these reactions, but their influence on subsequent organic products is poorly understood. Degradation experiments with billabong (= oxbow lake) water and river red gum (Eucalyptus camaldulensis) leaf leachate were conducted to assess the importance of these reactions in floodplain systems. Photochemical degradation of DOM in sunlight-irradiated quartz tubes (with and without amorphous iron oxide) was studied using gas chromatography and UV-visible spectroscopy. Photochemical reactions generated gaseous products and small organic acids. Bioavailability of billabong DOM increased following irradiation, whereas that of leaf leachate was not significantly altered. Fluorescence excitation-emission spectra suggested that the humic component of billabong organic matter was particularly susceptible to degradation, and the source of DOM influenced the changes observed. The addition of amorphous iron oxide increased rates of photochemical degradation of leachate and billabong DOM. The importance of photochemical reactions to aquatic systems will depend on the source of the DOM and its starting bioavailability, whereas inputs of freshly formed iron oxides will accelerate the processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

‘Melding’ is a novel in situ method for joining thermosetting composite structures, without the need of adhesives. Laminate joining is achieved using uncrosslinked resin matrix of the pre-preg. This study used Hexply914C pre-preg material to characterize melded CFRP structures produced using the melding method. A designated area of a laminate was maintained at temperatures below 40 °C retaining uncured (B-staged) material, while the remainder of the laminate was cured at 175 °C. After a 2.5 h cure cycle, the cured region showed a high degree of cure (0.88) and glass transition temperature (176 °C). The uncured area of the same laminate was cured in a second stage, simulating an in situ melded joint. By controlling the temperature and duration of the intermediate dwell and affecting minimum viscosity values prior to final cure, low values of porosity (<0.5%) were achieved. The mechanical properties of the resulting joint were consistent throughout the melded laminate. Flexural strength (1600 MPa), flexural modulus (100–105 MPa) and short beam strength (105–115 MPa) values observed where equivalent or greater than those found in the recommended autoclave cured control specimens. After the entire laminate was post cured, glass transition temperatures of 230 °C (peak tan δ) were observed in all areas of the laminate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Improving infrastructure to support walking and cycling is often regarded as fundamental to encouraging their widespread uptake. However, there is little evidence that specific provision of this kind has led to a significant increase in walking or cycling in practice, let alone wider impacts such as changes in overall physical activity or carbon emissions. Connect2 is a major new project that aims to promote walking and cycling in the UK by improving local pedestrian and cycle routes. It therefore provides a useful opportunity to contribute new evidence in this field by means of a natural experimental study.

Methods and analysis iConnect is an independent study that aims to integrate the perspectives of public health and transport research on the measurement and evaluation of the travel, physical activity and carbon impacts of the Connect2 programme. In this paper, the authors report the study design and methods for the iConnect core module. This comprised a cohort study of residents living within 5 km of three case study Connect2 projects in Cardiff, Kenilworth and Southampton, supported by a programme of qualitative interviews with key informants about the projects. Participants were asked to complete postal questionnaires, repeated before and after the opening of the new infrastructure, which collected data on demographic and socioeconomic characteristics, travel, car fuel purchasing and physical activity, and potential psychosocial and environmental correlates and mediators of those behaviours. In the absence of suitable no-intervention control groups, the study design drew on heterogeneity in exposure both within and between case study samples to provide for a counterfactual.

Ethics and dissemination The study was approved by the University of Southampton Research Ethics Committee. The findings will be disseminated through academic presentations, peer-reviewed publications and the study website (http://www.iconnect.ac.uk) and by means of a national seminar at the end of the study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method for the periodical assembly of laminates of forest-drawn carbon nanotube (CNT) sheets and polypyrrole (PPy) is described. The method produces composite films in which the volume fraction and orientation of CNTs can be controlled. Actuator stroke and strength is increased and work capacity per cycle doubled when nanotube orientation is perpendicular to the actuation direction. Most importantly, these PPy/CNT laminates have dramatically decreased creep during actuation, which has been a major barrier for the application of PPy actuators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an electrical double layer capacitor, dry-spun carbon nanotube yarn possesses relatively low specific capacitance. This can be significantly increased as a result of the pseudocapacitance of functional groups on the carbon nanotubes developed by oxidation using a gamma irradiation treatment in the presence of air. When coated with high-performance polyaniline nanowires, the gamma-irradiated carbon nanotube yarn acts as a high-strength reinforcement and a high-efficiency current collector in two-ply yarn supercapacitors for transporting charges generated along the long electrodes. The resulting supercapacitors demonstrate excellent electrochemical performance, cycle stability, and resistance to folding-unfolding that are required in wearable electronic textiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through comparative studying on LiFePO4/C preparation process of adding carbon source in precursor and pre-sintered material, marked as LFP-1 (in-situ carbon coating) and LFP-2 respectively, by means of C-S test, XRD, SEM, BET, Raman, the effects of carbon content, morphology, particle size and surface carbon structure on the electrochemical performance of LiFePO4/C cathodes were investigated. SEM images showed that particle sizes of LFP-1 and LFP-2 are about 10μm and 100nm respectively. The EIS and galvnostatic charge-discharge tests indicated that LFP-1 has lower charge transfer resistance (Rct), better rate and cycle performance than that of LFP-2, which can be attributed to the different microstructure and the higher degree of graphitized carbon of LiFePO4/C. Raman spectroscopic analysis showed that the ratio of the ID/IG and Asp3/Asp2 of LFP-1 is lower that of LFP-2, which means the degree of graphitized carbon of LFP-1 is higher than that of LEP-2. These results have important significance for improving the overall performance of olivine cathode materials for lithium ion batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This quasi-experimental study examines consumer reactions to including projected energy and carbon costs in print ads for a TV, using an online survey of 2566 Australian consumers. This study determines whether consumers' temporal orientation (past vs. future) moderates these reactions. Participants rate ads that include both energy and carbon costs as the most useful for buying a TV and as having higher perceived value. However, this fact does not affect likelihood of purchase. Participants with a high temporal orientation to the past react less favorably to ads that include carbon costs. This study shows that informing consumers about life-cycle costs does not substantially affect purchase decisions for durable goods but affects perceptions of value and usefulness of pricing information in ads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen-functionalized carbon nanofibers (N-CNFs) were prepared by carbonizing polypyrrole (PPy)-coated cellulose NFs, which were obtained by electrospinning, deacetylation of electrospun cellulose acetate NFs, and PPy polymerization. Supercapacitor electrodes prepared from N-CNFs and a mixture of N-CNFs and Ni(OH)2 showed specific capacitances of ∼236 and ∼1045 F g(-1), respectively. An asymmetric supercapacitor was further fabricated using N-CNFs/Ni(OH)2 and N-CNFs as positive and negative electrodes. The supercapacitor device had a working voltage of 1.6 V in aqueous KOH solution (6.0 M) with an energy density as high as ∼51 (W h) kg(-1) and a maximum power density of ∼117 kW kg(-1). The device had excellent cycle lifetime, which retained ∼84% specific capacitance after 5000 cycles of cyclic voltammetry scans. N-CNFs derived from electrospun cellulose may be useful as an electrode material for development of high-performance supercapacitors and other energy storage devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – Construction contractors and facility managers are being challenged to minimize the carbon footprint. Life cycle carbon‐equivalent (CO2‐e) accounting, whereby the potential emissions of greenhouse gases due to energy expenditure during construction and subsequent occupation of built infrastructure, generally ceases at the end of the service life. However, following demolition, recycling of demolition waste that becomes incorporated into 2nd generation construction is seldom considered within the management of the carbon footprint. This paper aims to focus on built concrete infrastructure, particularly the ability of recycled concrete to chemically react with airborne CO2, thereby significantly influencing CO2‐e estimates.

Design/methodology/approach – CO2‐e estimates were made in accordance with the methodology outlined in the Australian National Greenhouse Accounts (NGA) Factors and were based on the energy expended for each life cycle activity from audited records. Offsets to the CO2‐e estimates were based on the documented ability of concrete to chemically react with airborne carbon dioxide (“carbonation”) and predictions of CO2 uptake by concrete and recycled concrete was made using existing predictive diffusion models. The author's study focused on a built concrete bridge which was demolished and recycled at the end of the service life, and the recycled concrete was utilized towards 2nd generation construction. The sensitivity of CO2‐e and carbonation estimates were tested on several different types of source demolition waste as well as subsequent construction applications using recycled concrete (RCA). Whole‐of‐life CO2‐e estimates, including carbonation of RCA over the 1st and 2nd generations, were estimated and contrasted with conventional carbon footprints that end at the conclusion of the 1st generation.

Findings – Following demolition, CO2 capture by RCA is significant due to the more permeable nature of the crushed RCA compared with the original built infrastructure. RCA also has considerably greater exposed surface area, relative to volume, than a built concrete structure, and therefore more highly exposed surface to react with CO2: it therefore carbonates more comprehensively. CO2‐e estimates can be offset by as much as 55‐65 per cent when including the contribution of carbonation of RCA built within 2nd generation infrastructure. Further offsets are achievable using blended fly ash or slag cement binders; however, this study has focused on concrete composed of 100 per cent OPC binders and the effects of RCA.

Originality/value – Construction project estimates of life cycle CO2‐e emissions should include 2nd generation applications that follow the demolition of the 1st generation infrastructure. Life cycle estimates generally end at the time of demolition. However, by incorporating the recycled concrete demolition waste into the construction of 2nd generation infrastructure, the estimated CO2‐e is significantly offset during the 2nd generation life cycle by chemical uptake of CO2 (carbonation). This paper provides an approach towards inclusion of 2nd generation construction applications into whole‐of‐life estimates of CO2‐e.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The seafood industry has become increasingly interconnected at a global scale, with fish the most traded commodity worldwide. Travel to the farthest reaches of the oceans for capture is now common practice, and subsequent transport to market can require hundreds to thousands of miles of travel by sea and air. Refrigeration of seafood products is generally required at all stages of the journey from ocean to dinner plate, resulting in substantial energy expenditure. Energy input for aquaculture (including mariculture) products can also be high, namely due to the large amounts of feed required to support fish growth. As a result of these factors, the seafood industry has a substantial carbon footprint. Surprisingly, however, carbon footprints of seafood products are rarely integrated into assessments of their sustainability by eco-labels, sustainability certification, or consumer seafood sustainability guides. Suggestions are provided here for how carbon footprints could be incorporated within seafood sustainability schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants modify metabolic processes for adaptation to low phosphate (P) conditions. Whilst transcriptomic analyses show that P deficiency changes hundreds of genes related to various metabolic processes, there is limited information available for global metabolite changes of P-deficient plants, especially for cereals. As changes in metabolites are the ultimate ‘readout’ of changes in gene expression, we profiled polar metabolites from both shoots and roots of P-deficient barley (Hordeum vulgare) using gas chromatography–mass spectrometry (GC-MS). The results showed that mildly P-deficient plants accumulated di- and trisaccharides (sucrose, maltose, raffinose and 6-kestose), especially in shoots. Severe P deficiency increased the levels of metabolites related to ammonium metabolism in addition to di- and trisaccharides, but reduced the levels of phosphorylated intermediates (glucose-6-P, fructose-6-P, inositol-1-P and glycerol-3-P) and organic acids (α-ketoglutarate, succinate, fumarate and malate). The results revealed that P-deficient plants modify carbohydrate metabolism initially to reduce P consumption, and salvage P from small P-containing metabolites when P deficiency is severe, which consequently reduced levels of organic acids in the tricarboxylic acid (TCA) cycle. The extent of the effect of severe P deficiency on ammonium metabolism was also revealed by liquid chromatography–mass spectrometry (LC-MS) quantitative analysis of free amino acids. A sharp increase in the concentrations of glutamine and asparagine was observed in both shoots and roots of severely P-deficient plants. Based on these data, a strategy for improving the ability of cereals to adapt to low P environments is proposed that involves alteration in partitioning of carbohydrates into organic acids and amino acids to enable more efficient utilization of carbon in P-deficient plants.