19 resultados para bridge circuits, DC-AC power convertors, harmonic distortion, probability, PWM inverters

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microgrid (MG) power system with Distributed Generation (DG) plays an important role to provide reliable, secure, and low carbon emission energy supply for communities, in case of any failure or disturbance of energy supply from the main grid. At the same time, DG also contributes to several technical issues in the MG distribution network. Power quality (PQ) issues are one of the main technical challenges when integrating Renewable Energy (RE) sources in MG network. In this paper, the PQ issues like; power variation, voltage deviation, and Total Harmonic Distortion (THD) have been addressed by an impact analysis study on a typical solar PV MG power system in both on-grid and off-grid mode of operation. Analysis results from the study will be helpful in developing an independent MG power system with improved PQ conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microgrid (MG) power system plays an important role to fulfill reliable and secure energy supply to critical loads of communities as well as for communities in remote area. Distributed Generation (DG) sources integrated in a MG provides numerous benefits, at the same time leads to power quality issues in the MG power distribution network. Power Quality (PQ) issue arises due to the integration of an intermittent nature of Renewable Energy (RE) sources with advanced Power Electronics (PE) converter technology. Also, presence of non-linear and unbalancing loads in MG seems to affect PQ of the energy supply in power distribution network. In this paper, PQ impacts like; power variation, voltage variation, Total Harmonic Distortion (THD), and Unbalance voltage level have been analysed in Low Voltage (LV) distribution network of typical MG power system model. In this study, development of MG model and PQ impact analysis through simulation has been done in PSS-Sincal software environment. Analysis results from the study can be used as a guideline for developing a real and independent MG power system with improved PQ conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microgrid (MG) integrated with Distributed Generation (DG) provides several benefits like reliable, secure, and high efficient of energy supply, while minimizing power loss, deferring expansion of power distribution infrastructures, and reduced carbon emission of energy supply etc. to the communities. Despite of the several benefits, there are several challenges existing due to the integration of different characteristics and technology of DG sources in MG network. Power Quality (PQ) issue is one of the main technical challenges in MG power system. In order to provide improved PQ of energy supply, it is necessary to analyse and quantify the PQ level in MG network. This paper investigates the detail of PQ impacts in a real MG network carried out through an experimental analysis. Voltage and frequency variations/deviations are analysed in both on-grid and off-grid mode of MG operation at varying generation and varying load conditions. Similarly un-balance voltage and current level in neutral are estimated at unbalanced PV generation and uneven load distribution in MG network. Also current and voltage THD are estimated at different PV power level. Finally the results obtained from the analysis are compared to that of Australian network standard level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a five-level cascaded H-bridge multilevel inverters topology is applied on induction motor control known as direct torque control (DTC) strategy. More inverter states can be generated by a five-level inverter which improves voltage selection capability. This paper also introduces two different control methods to select the appropriate output voltage vector for reducing the torque and flux error to zero. The first is based on the conventional DTC scheme using a pair of hysteresis comparators and look up table to select the output voltage vector for controlling the torque and flux. The second is based on a new fuzzy logic controller using Sugeno as the inference method to select the output voltage vector by replacing the hysteresis comparators and lookup table in the conventional DTC, to which the results show more reduction in torque ripple and feasibility of smooth stator current. By using Matlab/Simulink, it is verified that using five-level inverter in DTC drive can reduce the torque ripple in comparison with conventional DTC, and further torque ripple reduction is obtained by applying fuzzy logic controller. The simulation results have also verified that using a fuzzy controller instead of a hysteresis controller has resulted in reduction in the flux ripples significantly as well as reduces the total harmonic distortion of the stator current to below 4 %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past decade, the growing demand of Grid-connected photo voltaic (GCPV) system has been increasing due to an extensive use of renewable energy technologies for sustainable power generation and distribution. High-penetrated GCPV systems enhance the operation of the network by improving the voltage levels and reducing the active power losses along the length of the feeder. This paper aims to investigate the voltage variations and Total Harmonic Distortion (THD) of a typical GCPV system modelled in Power system simulator, PSS SINCAL with the change of level of PV integrations in a Low Voltage (LV) distribution network. Five different case studies are considered to investigate the impact of PV integrations on LV nodes and the corresponding voltage variations and harmonics. In addition, this paper also explores and benchmarks the voltage improvement techniques by implementing On Load Tap Changer (OLTC) with respective to the main transformer and addition of Shunt Capacitor (SC) at appropriate node points in LV network,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Permanent magnet synchronous machines (PMSMs) are popular in both industrial and domestic applications because of its high efficiency, power density, and reliability as compared with the conventional types of electrical machines. Generally, the analytical models and their field solutions are preferable to provide an accurate insight of the PMSM performances, instead of using the finite element models, because the former takes a considerably shorter computational time. PMSM design could have different properties of either slotted or slotless, or varieties of magnet placement on the rotor. By focusing on semi-closed surface-mounted PMSMs, the 2D analytical subdomain model in [1] demonstrates an accurate prediction of the magnetic fields that can facilitate the evaluation of the global quantities of PMSMs, such as cogging torque (Tcog), back-EMF, and total harmonic distortion (THDv). Previously, researchers investigated the influences of the machine performance by a single factor, e.g., the variation of Tcog during changes of magnet pole-arc (αP) [2, 3], or slot-opening [2, 3]. These investigations normally considered two types of magnetization patterns, i.e., parallel (PaM) and radial magnetization (RM). Therefore, the motivation of our work hinges on predicting the optimum value of αP in designing a surface-mounted PMSM under influence of four different magnetization patterns, using the analytical subdomain model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Researchers typically tackle questions by constructing powerful, highlyreplicated sampling protocols or experimental designs. Such approaches often demand large samples sizes and are usually only conducted on a once-off basis. In contrast, many industries need to continually monitor phenomena such as equipment reliability, water quality, or the abundance of a pest. In such instances, costs and time inherent in sampling preclude the use of highlyintensive methods. Ideally, one wants to collect the absolute minimum number of samples needed to make an appropriate decision. Sequential sampling, wherein the sample size is a function of the results of the sampling process itself, offers a practicable solution. But smaller sample sizes equate to less knowledge about the population, and thus an increased risk of making an incorrect management decision. There are various statistical techniques to account for and measure risk in sequential sampling plans. We illustrate these methods and assess them using examples relating to the management of arthropod pests in commercial crops, but they can be applied to any situation where sequential sampling is used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrical data of two quay cranes, one has a DC drive system and the other has an AC drive system, in actual working conditions at a container terminal are measured and presented in this paper. Peak demand, energy usage, power factor and power quality are examined and compared.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an analysis of optimum rectifier circuits for wireless energy harvesting in deep brain stimulation (DBS) devices. Since DBS demands compact and low power consumption devices, small, high conversion efficient, and high output voltage rectifiers need to be developed. The investigation that is presented in this paper is analytical and simulated based. Analysis on a variety of circuit configurations brings more evidence to improve the performance of rectifiers. Analytical parameters influencing the output DC voltage and the efficiency of the rectifiers are described. The operating frequency of the 915 MHz industrial, scientific and medical (ISM) radio band is used in this study. The maximum conversion efficiency of the LC matched half wave rectifier, the Greinacher voltage doubler, the Delon doubler, and the 2-stage voltage multiplier is obtained as 56.34%, 74.45%, 71.48%, and 31.44%, respectively, at the 30 dBm input power level. The corresponding maximum output DC voltages are 6.27 V, 16.83 V, 13.36 V, and 9.20 V. Thus the Greinacher voltage doubler is deemed as the best configuration according to the conversion efficiency and the output voltage measurements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most of the inverters have an isolation transformer which prevents or limits fault current between AC and DC circuits under most fault conditions. If the transformer is excluded from the system, it would increase the PV system efficiency and decrease the size of its installations, which will lead to a lower cost for the whole investment. Thus, elimination of the transformer has to be considered carefully because a galvanic connection appears between the PV arrays and the ground in the absence of an isolation transformer. The galvanic connection causes the stray capacitance between the PV arrays structure and the ground to produce a leakage current. In this paper, a review of full bridge topology with bipolar and unipolar scheme and half bridge topology carried out in regard leakage current.in addition, HERIC and H5 topologies are simulated and leakage current in these topologies are evaluated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at -5 dBm input power and for load resistances of 5-15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both -5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increased concern about global warming coupled with the escalating demand of energy has driven the conventional power system to be more reliable one by integrating Renewable Energies (RE) in to grid. Over the recent years, integration of solar PV forming a gridconnected PV is considered as one of the most promisingtechnologies to the developed countries like Australia to meet the growing demand of energy. This rapid increase in grid connected photovoltaic (PV) systems has made the supply utilities concerned about the drastic effects that have to be considered on the distribution network in particular voltage fluctuations, harmonic distortions and the Power factor for sustainable power generation. However, irrespective of thefact that the utility grid can accommodate the variability of load or irregular solar irradiance, it is essential to study the impact of grid connected PV systems during higher penetration levels as the intermittent nature of solar PV adversely effects the grid characteristics in meeting the load demand. Hence, keeping this in track, this paper examines the grid-connected PV system considering a residential network of Geelong region (38◦.09' S and 144◦.21’ E) and explores the level of impacts considering summer load profile with a change in the level of integrations. Initially, a PV power system network model is developed in Matlab-Simulink environment and the simulations are carried out to explore the impacts of solar PV penetration at low voltage distribution network considering power quality (PQ) issues such as voltage fluctuations, harmonics distortion at different load conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrical power systems are undergoing highly significant changes in their structures. The emergence of renewable energy units in the power generation sector, the use of high-voltage DC in the power transmission sector, and the prevalence of islanded or integrated microgrids in the distribution sector are the strongest evidence supporting this claim. These changes are mostly the consequences of the increasing energy demand rate, climate change, and environmental challenges, as well as the high investment and maintenance cost of the previous structures. Considering these new conditions and according to the recent development in DC/DC conversion topologies and control techniques, different studies have been conducted on how and why DC microgrids outperform AC microgrids. This study discusses the feasibility of the DC microgrid system according to recent developments in power systems. The efficiency and power loss reduction in DC distribution systems are then analyzed, some of the common strategies and devices for protection systems in such networks are reviewed, and the possible and existing challenges in developing the DC microgrids are highlighted. The mathematical calculations and theories for this evaluation are presented to determine the reliable justification for selecting the appropriate microgrid systems.