38 resultados para body temperature

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to handling or other acute stressors, most mammals, including humans, experience a temporary rise in body temperature (T b). Although this stress-induced rise in T b has been extensively studied on model organisms under controlled environments, individual variation in this interesting phenomenon has not been examined in the field. We investigated the stress-induced rise in T b in free-ranging eastern chipmunks (Tamias striatus) to determine first if it is repeatable. We predicted that the stress-induced rise in T b should be positively correlated to factors affecting heat production and heat dissipation, including ambient temperature (T a), body mass (M b), and field metabolic rate (FMR). Over two summers, we recorded both T b within the first minute of handling time (T b1) and after 5 min of handling time (T b5) 294 times on 140 individuals. The mean ∆T b (T b5 – T b1) during this short interval was 0.30 ± 0.02°C, confirming that the stress-induced rise in T b occurs in chipmunks. Consistent differences among individuals accounted for 40% of the total variation in ∆T b (i.e. the stress-induced rise in T b is significantly repeatable). We also found that the stress-induced rise in T b was positively correlated to T a, M b, and mass-adjusted FMR. These results confirm that individuals consistently differ in their expression of the stress-induced rise in T b and that the extent of its expression is affected by factors related to heat production and dissipation. We highlight some research constraints and opportunities related to the integration of this laboratory paradigm into physiological and evolutionary ecology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of heat, i.e., thermogenesis, is a significant component of the metabolic rate, which in turn affects weight gain and health. Thermogenesis is linked to physical activity (PA) level. However, it is not known whether intrinsic exercise capacity, aging, and long-term voluntary running affect core body temperature. Here we use rat models selectively bred to differ in maximal treadmill endurance running capacity (Low capacity runners, LCR and High capacity Runners, HCR), that as adults are divergent for aerobic exercise capacity, aging, and metabolic disease risk to study the connection between PA and body temperature. Ten high capacity runner (HCR) and ten low capacity runner (LCR) female rats were studied between 9 and 21 months of age. Rectal body temperature of HCR and LCR rats was measured before and after 1-year voluntary running/control intervention to explore the effects of aging and PA. Also, we determined whether injected glucose and spontaneous activity affect the body temperature differently between LCR and HCR rats at 9 vs. 21 months of age. HCRs had on average 1.3°C higher body temperature than LCRs (p < 0.001). Aging decreased the body temperature level of HCRs to similar levels with LCRs. The opportunity to run voluntarily had a significant impact on the body temperature of HCRs (p < 0.001) allowing them to maintain body temperature at a similar level as when at younger age. Compared to LCRs, HCRs were spontaneously more active, had higher relative gastrocnemius muscle mass and higher UCP2, PGC-1α, cyt c, and OXPHOS levels in the skeletal muscle (p < 0.050). These results suggest that higher PA level together with greater relative muscle mass and higher mitochondrial content/function contribute to the accumulation of heat in the HCRs. Interestingly, neither aging nor voluntary training had a significant impact on core body temperature of LCRs. However, glucose injection resulted in a lowering of the body temperature of LCRs (p < 0.050), but not that of HCRs. In conclusion, rats born with high intrinsic capacity for aerobic exercise and better health have higher body temperature compared to rats born with low exercise capacity and disease risk. Voluntary running allowed HCRs to maintain high body temperature during aging, which suggests that high PA level was crucial in maintaining the high body temperature of HCRs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Heat generated by the specific dynamic action (SDA) associated with feeding is known to substitute for the thermoregulatory costs of cold-exposed endotherms; however, the effectiveness of this depends on food  temperature. When food is cooler than core body temperature, it is warmed by body heat and, consequently, imposes a thermoregulatory challenge to the animal. The degree to which this cost might be `paid' by SDA depends on the relative timing of food heating and the SDA response. We investigated this phenomenon in two genera of endotherms, Diomedea and Thalassarche albatrosses, by measuring postprandial metabolic rate following ingestion of food at body temperature (40°C) and cooler (0 and 20°C). This permitted us to estimate potential contributions to food warming by SDA-derived heat, and to observe the effect of cold food on metabolic rate. For meal sizes that were ~20% of body mass, SDA was 4.22±0.37% of assimilated food energy, and potentially contributed 17.9±1.0% and 13.2±2.2% of the required heating energy of food at 0°C for Diomedea and Thalassarche albatrosses, respectively, and proportionately greater quantities at higher food temperatures. Cold food increased the rate at which postprandial metabolic rate increased to 3.2–4.5 times that associated with food ingested at body temperature. We also found that albatrosses generated heat in excess by more than 50% of the estimated thermostatic heating demand of cold food, a probable consequence of time delays in physiological responses to afferent signals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exhaled air temperature (T exh) has a paramount effect on respiratory water loss during flight. For migratory birds, low T exh potentially reduces water loss and increases flight range. However, only three studies provide empirical data on T exh during flight. The aim of this study was to record T exh of birds during rest and flight at a range of controlled ambient temperatures (T amb). One wigeon and two teal flew a total of 20 times in a wind tunnel at T amb ranging from 1° to 24°C. T exh during flight did not differ between the two species and was strongly correlated with T amb (T exh=1.036 T amb + 13.426; R2=0.58). In addition, body temperature had a weak positive effect on T exh. At a given T amb, T exh was about 5°C higher during flight than at rest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of our study was to establish whether rectal temperature recordings in humans could be replaced by a non-invasive skin temperature sensor combined with a heat flux sensor (Double Sensor) located at the forehead to monitor core body temperature changes due to circadian rhythms. Rectal and Double Sensor data were collected continuously for 24h in seven men undertaking strict head-down tilt bed-rest. Individual differences between the two techniques varied between -0.72 and +0.55 degrees C. Nonetheless, when temperature data were approximated by cosinor analysis in order to compare circadian rhythm profiles between methods, it was observed that there were no significant differences between mesor, amplitude, and acrophase (P>0.310). It was therefore concluded that the Double Sensor technology is presently not accurate enough for performing single individual core body temperature measurements under resting conditions at normal ambient room temperature. Yet, it seems to be a valid, non-invasive alternative for monitoring circadian rhythm profiles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many terrestrial ectotherms are capable of rapid colour change, yet it is unclear how these animals accommodate the multiple functions of colour, particularly camouflage, communication and thermoregulation, especially when functions require very different colours. Thermal benefits of colour change depend on an animal's absorptance of solar energy in both UV–visible (300-700 nm) and near-infrared (NIR; 700-2600 nm) wavelengths, yet colour research has focused almost exclusively on the former. Here, we show that wild-caught bearded dragon lizards (Pogona vitticeps) exhibit substantial UV–visible and NIR skin reflectance change in response to temperature for dorsal but not ventral (throat and upper chest) body regions. By contrast, lizards showed the greatest temperature-independent colour change on the beard and upper chest during social interactions and as a result of circadian colour change. Biophysical simulations of heat transfer predicted that the maximum temperature-dependent change in dorsal reflectivity could reduce the time taken to reach active body temperature by an average of 22 min per active day, saving 85 h of basking time throughout the activity season. Our results confirm that colour change may serve a thermoregulatory function, and competing thermoregulation and signalling requirements may be met by partitioning colour change to different body regions in different circumstances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The central bearded dragon (Pogona vitticeps) is a medium-sized lizard that is common in semiarid habitats in Australia and that potentially is at risk of fenitrothion exposure from use of the chemical in plague locust control. We examined the effects of single sublethal doses of this organophosphate (OP; low dose = 2.0 mg/kg; high dose = 20 mg/kg; control = vehicle alone) on lizard thermal preference, standard metabolic rate, and prey-capture ability. We also measured activities of plasma total cholinesterase (ChE) and acetylcholinesterase before and at 0, 2, 8, 24, 120, and 504 h after OP dosing. Predose plasma total ChE activity differed significantly between sexes and averaged 0.66 ± 0.06 and 0.45 ± 0.06 μmol/min/ml for males and females, respectively. Approximately 75% of total ChE activity was attributable to butyrylcholinesterase. Peak ChE inhibition reached 19% 2 h after OP ingestion in the low-dose group, and 68% 8 h after ingestion in high-dose animals. Neither OP doses significantly affected diurnal body temperature, standard metabolic rate, or feeding rate. Plasma total ChE levels remained substantially depressed up to 21 d after dosing in the high-dose group, making this species a useful long-term biomonitor of OP exposure in its habitat.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the effect of temperature on resting metabolic rate in seven field-captured laughing kookaburras (Dacelo novaeguineae) during late winter and early spring. Basal metabolic rate averaged 201±3.4 ml O2 h–1 (0.603 ml O2 g–1 h–1). Overall thermal conductance (Ko) declined with ambient temperature (Ta) and averaged 0.026 ml O2 g–1 h–1 °C–1 at Tas<10 °C. Day-night differences in body temperatures (2.6 °C) and in alpha-phase versus rho-phase minimum metabolic rates were much greater (33%) than predicted for 340-g nonpasserine birds and suggest that these animals operate as low-metabolic intensity animals in their rest phase, but normal-metabolic intensity animals during their active phase. Metabolic rate was measured in four of the same birds undergoing moult. Thermal conductance increased to 60% above pre-moult values about 6 weeks after moult began. Basal metabolic rate of moulting birds showing peak thermal conductance readings averaged 17 ml O2 h–1 higher than pre-moult measurements. Although this increase was not statistically significant, we believe the moult costs of kookaburras are too low to overcome the inherent variability of BMR determination. We suggest that moult costs of kookaburras are only somewhat higher than the measured costs of protein synthesis of other endotherms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermoregulatory responses of subjects wearing two different forms of rugby league jersey, one with plastic sponsorship recognition and numbering (trial Gl) and one without (trial G2), and a lightweight alternative (trial G3), were compared with a trial without any form of upper body garment (trial GO). Ten male volunteers, mean age 20.9 (±2.3) years, height 179.8 (±4.7) cm, weight 80.2 (±8.9) kg, and body surface area 1.99 (±0.13) m2, participated in this study. Subjects had a mean maximal oxygen uptake capacity of 56.0 (±6.3) ml.kg.min-1 and a sum of 8 skinfolds of 80.6 (±23.8) mm. Subjects were exercised at approximately 50% of maximal oxygen uptake in a warm humid environment for 50 minutes. Mean ambient temperature was 27.6°C (±0.32) with a relative humidity of 64.7% (±1.44). Measurements of core and skin (7 sites) temperature, heart rate, oxygen uptake, plasma volume, peak lactate concentration, and pre- and post-trial body weight, hematocrit and garment weight were recorded. The statistical results showed that all subjects experienced significant (p ≤.0001) decreases in body weight representing a percentage decrease ranging from 1.2-1.3%. No significant difference was found between trials with respect to body weight change. No significant effect of garment type was found on pre- and post-trial hematocrit, plasma volume changes or peak blood lactic acid concentration. However, mean peak lactate was highest for trial Gl (5.6 mmol.L-1 ±2.2) and lowest for trial G3 (4.6 mmol.L-1 ±1.27). Post-trial core temperature was significantly (p≤ .0001) higher than the resting value; no significant difference was found between trials. The mean absolute increase for all experimental trials was 0.9°C. A significant (p≤.005) difference between mean total (7 sites) skin temperature was found with a post-hoc test revealing that trials Gl and G2 were significantly higher than trial GO; no significant difference was found when comparing trial G3 with trial GO or when comparing the garments between each other. Mean skin temperature under the garment (4 sites) was found to be significantly (p≤.05) higher for all trials involving a garment when compared with mean skin temperature outside (3 sites) the garment; no significant difference was found between trials. Mean oxygen uptake was significantly different between trials (p≤.005), with trial Gl and G3 found to be significantly lower than trial GO; no difference was found when comparing the garments with each other. Post-trial garment weights were significantly (p≤.001) heavier than pre-trial and were significantly (p≤.0001) different when compared with each other. There was no significant effect on heart rate, haematocrit, plasma volume changes, peak blood lactic acid concentration, or core temperature due to garment type. However, differences in skin temperature suggest that the garment used in trial G3 may have a benefit. Further research should consider the impact of increased exercise intensity and/or environmental temperature and humidity on the measured parameters while wearing the garments described in this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since April 2001 we have been monitoring the Subjective Wellbeing (SWB) of the Australian population using the Personal Wellbeing Index. Our aims are to establish normative values and to identify people with abnormally low SWB. Each of 18 surveys has involved a new sample of 2,000 people, randomly chosen but representing the geographical distribution of the population. The data are remarkable for their stability, with the variation in population mean scores being just 3.2 percentage points. The cause of such high reliability is Subjective Wellbeing Homeostasis. Here, in a manner analogous to the management of body temperature, the SWB for each person is normally held positive and within a narrow set-point range. However, all homeostatic systems have a limited capacity to absorb challenge and when aversive experiences are both strong and sustained, homeostasis fails. If this occurs, people lose their normal positive view of themselves and become depressed. Therefore, the second aim of these studies is to reveal the demographic character of families in distress, who are in need of additional resources. Our data reveal the extent to which family structure and responsibilities impact on wellbeing. They also yield important diagnostic information about individuals, and point to SWB as a crucial measure of intervention outcome. In sum, the Personal Wellbeing Index is a simple, reliable and valid measure of SWB. The measures it yields are theoretically embedded, they can be compared against solid normative data, and their interpretation is enhanced through an understanding of SWB homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to determine whether 5-HT2A receptors mediate cardiovascular and thermogenic responses to acute psychological stresses. For this purpose, adult male Wistar hooded rats instrumented for telemetric recordings of either electrocardiogram (ECG) (n=12) or arterial pressure (n=12) were subjected, on different days, to four 15-min episodes of social defeat. Prior to stress, animals received s.c. injection of the selective 5-HT2A receptor antagonist SR-46349B (trans-4-((3Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate) (at doses of 0.3, 1.0 and 3.0 mg/kg) or vehicle. The drug had no effect on basal heart rate or heart rate variability indexes, arterial pressure, and core body temperature. Social defeat elicited significant and substantial tachycardic (347±7 to 500±7 bpm), pressor (77±4 to 97±4 mm Hg) and hyperthermic (37.0±0.3 to 38.5±0.1 °C) responses. Blockade of 5-HT2A receptors, at all doses of the antagonist, completely prevented stress-induced hyperthermia. In contrast, stress-induced cardiovascular responses were not affected by the blockade (except small reduction of tachycardia by the highest dose of the drug). We conclude that in rats, 5-HT2A receptors mediate stress-induced hyperthermic responses, but are not involved in the genesis of stress-induced rises in heart rate or arterial pressure, and do not participate in cardiovascular control at rest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current study, in parallel experiments, evaluated the impact of chronic psychological stress on physiological and behavioural measures, and on the activation status of microglia in 15 stress-responsive brain regions. Rats were subjected, for 14 days, to two 30 min sessions of restraint per day, applied at random times each day. In one experiment the effects of stress on sucrose preference, weight gain, core body temperature, and struggling behaviour during restraint, were determined. In the second experiment we used immunohistochemistry to investigate stress-induced changes in ionized calcium-binding adaptor molecule-1 (Iba1), a marker constitutively expressed by microglia, and major histocompatibility complex-II (MHC-II), a marker often expressed on activated microglia, in a total of 15 stress-responsive nuclei. We also investigated cellular proliferation in these regions using Ki67 immunolabelling, to check for the possibility of microglial proliferation. Collectively, the results we obtained showed that chronic stress induced a significant increase in anhedonia, a decrease in weight gain across the entire observation period, a significant elevation in core body temperature during restraint, and a progressive decrease in struggling behaviour within and over sessions. With regard to microglial activation, chronic stress induced a significant increase in the density of Iba1 immunolabelling (nine of 15 regions) and the number of Iba1-positive cells (eight of 15 regions). Within the regions that exhibited an increased number of Iba1-positive cells after chronic stress, we found no evidence of a between group difference in the number of MHC-II or Ki67 positive cells. In summary, these results clearly demonstrate that chronic stress selectively increases the number of microglia in certain stress-sensitive brain regions, and also causes a marked transition of microglia from a ramified-resting state to a non-resting state. These findings are consistent with the view that microglial activation could play an important role in controlling and/or adapting to stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: The ability of endotherms to physiologically regulate body temperature (Tb) is presumed to be important in the adaptive radiation of birds and mammals. Recently, attention has shifted towards determining the extent and energetic significance of Tb variation documented in an ever-expanding list of species. Thus, we provide the first global synthesis of ecological and evolutionary correlates of variation in mammalian Tb. Location: World-wide Methods: We conducted a phylogenetically informed analysis of Tb variation using two complementary metrics, namely Thermoregulatory Scope (TS) and Heterothermy Index (HI), that treat Tb variation as a continuous variable. We included morphological (e.g. body mass), ecological (e.g. food habits) and environmental (e.g. latitude) correlates in the analysis. Results: Among 560 mammal species included in the TS analysis, Tb relates most strongly to body mass (included in all models), season (relative parameter weight: 0.95), absolute latitude (0.80) and hoarding behavior (0.72), with small-bodied, high latitude and non-hoarding species expressing the most Tb variation. Small-bodied and high latitude species also express a greater range of thermoregulatory patterns than large-bodied and low latitude species. Results were generally similar in HI analysis, but in summer the extent of heterothermy decreases with latitude. Main conclusions: Mammalian heterothermy is related to evolutionary history, climate conditions constraining minimum Tb, resource conditions mediating energy supply for maintaining high Tb, and latitudinal variation in the nature of seasonality. Our analysis further shows that traditional classification of mammals as hibernators, daily heterotherms or homeotherms is clouded or possibly misleading.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the face of the physical and physiological challenges of performing breath-hold deep dives, marine vertebrates have evolved different strategies. Although behavioural strategies in marine mammals and seabirds have been investigated in detail, little is known about the deepest-diving reptile – the leatherback turtle (Dermochelys coriacea). Here, we deployed tri-axial accelerometers on female leatherbacks nesting on St Croix, US Virgin Islands, to explore their diving strategy. Our results show a consistent behavioural pattern within dives among individuals, with an initial period of active swimming at relatively steep descent angles (∼–40 deg), with a stroke frequency of 0.32 Hz, followed by a gliding phase. The depth at which the gliding phase began increased with the maximum depth of the dives. In addition, descent body angles and vertical velocities were higher during deeper dives. Leatherbacks might thus regulate their inspired air-volume according to the intended dive depth, similar to hard-shelled turtles and penguins. During the ascent, turtles actively swam with a stroke frequency of 0.30 Hz but with a low vertical velocity (∼0.40 ms–1) and a low pitch angle (∼+26 deg). Turtles might avoid succumbing to decompression sickness (‘the bends’) by ascending slowly to the surface. In addition, we suggest that the low body temperature of this marine ectotherm compared with that of endotherms might help reduce the risk of bubble formation by increasing the solubility of nitrogen in the blood. This physiological advantage, coupled with several behavioural and physical adaptations, might explain the particular ecological niche the leatherback turtle occupies among marine reptiles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Maintaining a high and stable body temperature is often critical for female ectotherms during reproduction. Yet this strategy may be energetically costly, and therefore challenging, during this period of already high-energy demand. 2. Here, the 6-week deployment of tri-axial accelerometers (n = 6) on a marine ectotherm, the loggerhead turtle (Caretta caretta), reproducing at the northern limit of the species’ breeding range (i.e. in a thermally dynamic environment) revealed the behavioural mechanisms underlying its energy management strategy during the breeding season. 3. The estimated activity levels of female loggerheads using overall dynamic body acceleration (ODBA) were high during the breeding season, suggesting that marine turtles may not be able to remain inactive for long periods in the same manner as terrestrial ectotherms, because of the thermally dynamic nature of their environment. 4. However, activity levels were not constant throughout the season, being impacted by both ambient water temperature and female reproductive status. In cold water at the beginning of the nesting season, high levels of activity suggested that females behaviourally thermoregulated by seeking out warm water patches along the shoreline. Interactions with male turtles (courtship and/or avoidance) may also explain this high level of activity. As sea temperatures warmed up and the amount of energy devoted to reproduction probably increased, the turtles spent more time resting during long sequential flat-bottomed dives, and reduced any unnecessary locomotory activity. 5. Turtles may therefore adjust their activity patterns in response to seasonal variations in abiotic (i.e. ambient temperature) and biotic (i.e. reproductive status) factors. This may help minimize activity-linked metabolic rate and maximize reproductive output over a season while breeding in thermally dynamic environments. 6. A mechanistic model gave support to these empirical results. The model revealed that actively maintaining high and stable body temperature is of clear benefit to female turtles at temperate breeding sites. While energetically costly, such active thermoregulatory behaviour may speed up egg maturation, allowing turtles to initiate nesting earlier in the season, and hence maximize reproductive output.