60 resultados para blends

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase behavior, morphology and crystallization in blends of a low-molecular-weight (Mn = 1400) double-crystalline polyethylene-block-poly(ethylene oxide) (PE-PEO) diblock copolymer with poly(hydroxyether of bisphenol A) (PH) were investigated by differential scanning calorimetry, transmission electron microscopy and small-angle X-ray scattering. The symmetric PE-PEO diblock copolymer consists of a PH-miscible PEO block and a PH-immiscible PE block. However, PH only exhibits partial miscibility with the PEO block of the copolymer in the PH/PE-PEO blends; both macrophase and microphase separations took place. There existed two macrophases in the PH/PE-PEO blends, i.e., a PH-rich phase and a PE-PEO copolymer-rich phase. The PE block of the copolymer in the blends exhibited fractionated crystallization behavior by homogeneous nucleation. There appeared three crystallization exotherms related to the crystallization of the PE block within three different microenvironments in the PH/PE-PEO blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermosetting polymer blends of poly(ethylene oxide) (PEO) and bisphenol-A-type epoxy resin (ER) were prepared using 4,4′-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA) as curing agent. The miscibility and crystallization behavior of MCDEA-cured ER/PEO blends were investigated by differential scanning calorimetry (DSC). The existence of a single composition-dependent glass transition temperature (Tg) indicates that PEO is completely miscible with MCDEA-cured ER in the melt and in the amorphous state over the entire composition range. Fourier-transform infrared (FTIR) investigations indicated hydrogen-bonding interaction between the hydroxyl groups of MCDEA-cured ER and the ether oxygens of PEO in the blends, which is an important driving force for the miscibility of the blends. The average strength of the hydrogen bond in the cured ER/PEO blends is higher than in the pure MCDEA-cured ER. Crystallization kinetics of PEO from the melt is strongly influenced by the blend composition and the crystallization temperature. At high conversion, the time dependence of the relative degree of crystallinity deviated from the Avrami equation. The addition of a non-crystallizable ER component into PEO causes a depression of both the overall crystallization rate and the melting temperature. The surface free energy of folding σe displays a minimum with variation of composition. The spherulitic morphology of PEO in the ER/PEO blends exhibits typical characteristics of miscible crystalline/amorphous blends, and the PEO spherulites in the blends are always completely volume-filling. Real-time small-angle X-ray scattering (SAXS) experiments reveal that the long period L increases drastically with increasing ER content at the same temperatures. The amorphous cured ER component segregates interlamellarly during the crystallization process of PEO because of the low chain mobility of the cured ER. A model describing the semicrystalline morphology of MCDEA-cured ER/PEO blends is proposed based on the SAXS results. The semicrystalline morphology is a stack of crystalline lamellae; the amorphous fraction of PEO, the branched ER chains and imperfect ER network are located between PEO lamellae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers were successfully prepared. Two samples of PEO-PPO-PEO triblock copolymer with different ethylene oxide (EO) contents, denoted as EO30 with 30 wt % EO content and EO80 with 80 wt % EO content, were used to form the self-organized thermoset blends of varying compositions using 4,4'-methylenedianiline (MDA) as curing agent. The phase behavior, crystallization, and morphology were investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle X-ray scattering (SAXS). It was found that macroscopic phase separation took place in the MDA-cured ER/EO30 blends containing 60-80 wt % EO30 triblock copolymer. The MDA-cured ER/EO30 blends with EO30 content up to 50 wt % do not show macroscopic phase separation but exhibit nanostructures on the order of 10-30 nm as revealed by both the TEM and SAXS studies. The AFM study further shows that the ER/EO30 blend at some composition displays structural inhomogeneity at two different nanoscales and is hierarchically nanostructured. The spherical PPO domains with an average size of about 10 nm are uniformly dispersed in the 80/20 ER/EO30 blend; meanwhile, a structural inhomogeneity on the order of 50-200 nm is observed. The ER/EO80 blends are not macroscopically phase-separated over the entire composition range because of the much higher PEO content of the EO80 triblock copolymer. However, the ER/EO80 blends show composition-dependent nanostructures on the order of 10-100 nm. The 80/20 ER/EO80 blend displays hierarchical structures at two different nanoscales, i.e., a bicontinuous microphase structure on the order of about 100 nm and spherical domains of 10-20 nm in diameter uniformly dispersed in both the continuous microphases. The blends with 60 wt % and higher EO80 content are completely volume-filled with spherulites. Bundles of PEO lamellae with spacing of 20-30 nm interwoven with a microphase structure on the order of about 100 nm are revealed by AFM study for the 30/70 ER/EO80 blend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the first instance of self-organized thermoset blends containing diblock copolymers with a crystallizable thermoset-immiscible block. Nanostructured thermoset blends of bisphenol A-type epoxy resin (ER) and a low-molecular-weight (Mn = 1400) amphiphilic polyethylene-block-poly(ethylene oxide) (EEO) symmetric diblock copolymer were prepared using 4,4'-methylenedianiline (MDA) as curing agent and were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). All the MDA-cured ER/EEO blends do not show macroscopic phase separation but exhibit microstructures. The ER selectively mixes with the epoxy-miscible PEO block in the EEO diblock copolymer whereas the crystallizable PE blocks that are immiscible with ER form separate microdomains at nanoscales in the blends. The PE crystals with size on nanoscales are formed and restricted within the individual spherical micelles in the nanostructured ER/EEO blends with EEO content up to 30 wt %. The spherical micelles are highly aggregated in the blends containing 40 and 50 wt % EEO. The PE dentritic crystallites exist in the blend containing 50 wt % EEO whereas the blends with even higher EEO content are completely volume-filled with PE spherulites. The semicrystalline microphase-separated lamellae in the symmetric EEO diblock copolymer are swollen in the blend with decreasing EEO content, followed by a structural transition to aggregated spherical micellar phase morphology and, eventually, spherical micellar phase morphology at the lowest EEO contents. Three morphological regimes are identified, corresponding precisely to the three regimes of crystallization kinetics of the PE blocks. The nanoscale confinement effect on the crystallization kinetics in nanostructured thermoset blends is revealed for the first time. This new phenomenon is explained on the basis of homogeneous nucleation controlled crystallization within nanoscale confined environments in the block copolymer/thermoset blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crosslink-able elastomeric polyester urethane (PEU) was blended with a thermoplastic, polyacrylonitrile (PAN), and electrospun into nanofibres. The effects of the PEU/PAN ratio and the crosslinking reaction on the morphology and the tensile properties of the as-spun fibre mats were investigated. With the same overall polymer concentration (9 wt %), the nanofibre containing higher composition of PEU shows a slight decrease in the average fibre diameter, but the tensile strength, the elongation at break and tensile modulus of the nanofibre mats are all improved. These tensile properties are further enhanced by slight crosslinking of the PEU component within the nanofibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studied the wool and alpaca fibre curvature and its variation during the fibre processing. It revealed the effect of wool fibre crimp on the cohesion properties of alpaca and wool blended slivers. Different wool and alpaca tops were blended via a number of gillings, and the role of wool fibre curvature in alpaca/wool blend processing has also been investigated. During the wool fibre processing, fibre curvature tended to diminish gradually from scoured fibre to top. Blending wool with alpaca fibres improved the cohesion properties of the blended sliver, compared with pure alpaca slivers. For a high ratio of alpaca component in the blend, a high-crimp wool should be used to achieve good sliver cohesion.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase behavior, hydrogen bonding interactions and morphology of poly(hydroxyether of bisphenol A) (phenoxy) and poly(var epsilon-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP) were investigated using differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, optical microscopy and atomic force microscopy (AFM). In this A-b-B/C type block copolymer/homopolymer system, both P2VP and PCL blocks have favorable intermolecular interaction towards phenoxy via hydrogen bonding. However, the hydrogen bonding between P2VP and phenoxy is significantly stronger than that between PCL and phenoxy. Selective hydrogen bonding between phenoxy/P2VP pair at lower phenoxy contents and co-existence of two competitive hydrogen bonding interactions between phenoxy/P2VP and phenoxy/PCL pairs at higher phenoxy contents were observed in the blends. This leads to the formation of a variety of composition dependent nanostructures including wormlike, hierarchical and core–shell morphologies. The blends became homogeneous at 95 wt% phenoxy where both blocks of the PCL-b-P2VP were miscible with phenoxy due to hydrogen bonding. In the end, a model was proposed to explain the microphase morphology of blends based on the experimental results obtained. The swelling of the PCL-b-P2VP block copolymer by phenoxy due to selective hydrogen bonding causes formation of different microphases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured thermoset blends were prepared based on a bisphenol A-type epoxy resin and an amphiphilic reactive diblock copolymer, namely polyisoprene-block-poly(4-vinyl pyridine) (PI-P4VP). Infrared spectra revealed that the P4VP block of the diblock copolymer reacted with the epoxy monomer. However, the non-reactive hydrophobic PI block of the diblock copolymer formed a separate microphase on the nanoscale. Ozone treatment was used to create nanoporosity in nanostructured epoxy/PI-P4VP blends via selective removal of the PI microphase and lead to nanoporous epoxy thermosets; disordered nanopores with the average diameter of about 60 nm were uniformly distributed in the blend with 50 wt% PI-P4VP. Multi-scale phase separation with a distinctly different morphology was observed at the air/sample interface due to the interfacial effects, whereas only uniform microphase separated morphology at the nanoscale was found in the bulk of the blend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-bath dyeing of blends of polytrimethylene terephthalate (PTT) staple and wool has been investigated. The exhaustion of selected Terasil disperse dyes on PTT fibre and Lanasol reactive dyes on wool was measured as a function of temperature, together with the cross-staining of the Terasil dyes on the wool component and the Lanasol dyes on PTT component. Most Terasil disperse dyes achieved satisfactory dye uptake on PTT at 110 °C, whereas on conventional polyester (polyethylene terephthalate) temperatures of up to 130 °C are required. An optimised union-dyeing technique for wool/PTT blends was developed which minimised the staining of Terasil disperse dyes on wool and produced dyed goods with high levels of wet colour fastness. Carriers were not required to enhance the dyeability of PTT at low temperatures. The wool component appeared to be protected against damage at 110 °C by the reactive dyes. The results indicate the potential for blending PTT fibre and wool to produce fabrics that are easier to dye at lower temperatures than conventional wool/polyester blends.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of a tetrafunctional epoxy resin, tetraglycidyl- 4,40'-diaminodiphenylmethane (TGDDM), and a hydroxylfunctionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 3,3'-diaminodiphenyl sulfone (DDS) as curing agent. The phase behavior and morphology of the DDS-cured epoxy/HBP blends with HBP content up to 30 phr were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The phase behavior and morphology of the DDS-cured epoxy/HBP blends were observed to be dependent on the blend composition. Blends with HBP content from 10 to 30 phr, show a particulate morphology where discrete HBP-rich particles are dispersed in the continuous cured epoxy-rich matrix. The cured blends with 15 and 20 phr exhibit a bimodal particle size distribution whereas the cured blend with 30 phr HBP demonstrates a monomodal particle size distribution. Mechanical measurements show that at a concentration range of 0–30 phr addition, the HBP is able to almost double the fracture toughness of the unmodified TGDDM epoxy resin. FTIR displays the formation of hydrogen bonding between the epoxy network and the HBP modifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In transmission and scanning electron microscopy imaging, the ability to obtain sufficient contrast between the components of a blend when they are both of a similar chemical structure still remains problematic. This paper investigates the domain morphology of a polymer blend containing two polyamides, nylon 6 and the semi-aromatic polyamide poly(m-xylene adipamide) (MXD6), using scanning electron microscopy in backscattered electron imaging mode. The efficiency of three staining agents, ruthenium tetroxide, phosphotungstic acid and silver sulfide, in obtaining optimum phase contrast between the two polymers is discussed.
RESULTS: The use of silver sulfide as a staining agent was found to be a fast and reliable approach which required basic sample preparation and provided excellent compositional contrast between the phases present in the nylon 6/MXD6 blends compared to the other staining agents.
CONCLUSIONS: The technique described in this paper is believed to be a novel and versatile method that has the potential to further improve the ability to study complex polymer blends where one polymer contains an aromatic ring.