5 resultados para biosorbent

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of cassava peel waste for Ni-sorption is evaluated in this work. The biosorbents are characterized by Boehm titration, Fourier transform-infra red (FTIR) spectroscopy, Nitrogen sorption, scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis (e.g. elemental mapping) and X-ray photoelectron spectroscopy (XPS). Adsorption experiments are performed in batch mode at 30 °C (303.15 K), 45 °C (318.15 K) and 60 °C (333.15 K). The performance of several temperature dependence forms of isotherm models e.g. Langmuir, Freundlich, Sips and Toth to represent the adsorption equilibrium data is evaluated and contrasted. Sips model demonstrates the best fitting with the maximum uptake capacity for Ni(II) ions of 57 mg/g (0.971 mmol/g) at pH 4.5. For kinetic data correlation, pseudo-second order model shows the best representation. The chemisorption mechanism and thermodynamics aspect are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainability is becoming increasingly important in the mining and mineral processing industries and must incorporate the associated waste products. Acid mine drainage (AMD) is one such by-product and is one of the most serious environmental problems facing the minerals industry today. The oxidation of sulphidic mine wastes often continues for a substantial period of time after mine closure, resulting in difficult and costly remediation and rehabilitation works. Mining companies are often reluctant to spend increasing amounts of money on waste treatment when the mine life is limited or even finished. Hence a simple, low maintenance and low-cost method of treating AMD is required. Whilst this paper does not address the issue of AMD, it does propose methods for removal of individual species from AMD with potential benefits, including raising AMD pH.

A novel concept of using biosolids as a biological adsorbent, or ‘biosorbent’, of metals from AMD is being investigated at a laboratory/pilot scale level. Biosolids are a by-product resulting from the biological treatment of wastewater, and have been previously shown to adsorb metals from aqueous solutions. This could lead to an environmentally sustainable or ‘green’ method for treating both AMD discharges and disposing/reusing the biosolids.

The result of a laboratory-scale study of the biosorption of Zn(II) is presented in this paper. Physical parameters including reaction kinetics, mixing speed and solution pH were investigated. Solution pH also rose an average of 2 pH units over the 24 hour equilibrium time – a valuable side effect when treating acid mine drainage. The outcome of the study highlights the usefulness of biosolids as a biosorbent for the removal/recovery of metal ions from acid mine drainage. A simple, low-cost treatment technology requiring low maintenance would be beneficial to the mining industry to address some issues relating to AMD and would help integrate environmental and economic considerations into sustainable environmental management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant number of biosorption studies on the removal of heavy metal from aqueous solutions have been conducted worldwide. Nearly all of them have been directed towards optimizing biosorption parameters to obtain the highest removal efficiency while the rest of them are concerned with the biosorption mechanism. Combinations of FTIR, SEM-EDX, TEM as well as classical methods such as titrations are extremely useful in determining the main processes on the surfaces of biosorbents. Diverse functional groups represented by carboxyl, hydroxyl, sulfate and amino groups play significant roles in the biosorption process. Solution pH normally has a large impact on biosorption performance. In brief, ion exchange and complexation can be pointed out as the most prevalent mechanisms for the biosorption of most heavy metals.