9 resultados para biological invasion

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Disturbance and anthropogenic land use changes are usually considered to be key factors facilitating biological invasions. However, specific comparisons of invasion success between sites affected to different degrees by these factors are rare.

2. In this study we related the large-scale distribution of the invading New Zealand mud snail (Potamopyrgus antipodarum) in southern Victorian streams, Australia, to anthropogenic land use, flow variability, water quality and distance from the site to the sea along the stream channel.

3. The presence of P. antipodarum was positively related to an index of flow-driven disturbance, the coefficient of variability of mean daily flows for the year prior to the study.

4. Furthermore, we found that the invader was more likely to occur at sites with multiple land uses in the catchment, in the forms of grazing, forestry and anthropogenic developments (e.g. towns and dams), compared with sites with low-impact activities in the catchment. However, this relationship was confounded by a higher likelihood of finding this snail in lowland sites close to the sea.

5. We conclude that P. antipodarum could potentially be found worldwide at sites with similar ecological characteristics. We hypothesise that its success as an invader may be related to an ability to quickly re-colonise denuded areas and that population abundances may respond to increased food resources. Disturbances could facilitate this invader by creating spaces for colonisation (e.g. a possible consequence of floods) or changing resource levels (e.g. increased nutrient levels in streams with intense human land use in their catchments).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances highlight the potential for predators to restore ecosystems and confer resilience against globally threatening processes, including climate change and biological invasions. However, releasing the ecological benefits of predators entails significant challenges. Here, we discuss the economic, environmental and social considerations affecting predator-driven ecological restoration programmes, and suggest approaches for reducing the undesirable impacts of predators. Because the roles of predators are context dependent, we argue for increased emphasis on predator functionality in ecosystems and less on the identities and origins of species and genotypes. We emphasise that insufficient attention is currently given to the importance of variation in the social structures and behaviours of predators in influencing the dynamics of trophic interactions. Lastly, we outline experiments specifically designed to clarify the ecological roles of predators and their potential utility in ecosystem restoration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disentangling the effects of prey limitation (bottom-up) and predation (top-down) processes on natural populations is difficult, but the perturbations introduced by an invasive species can provide pseudo-experimental evidence on this issue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasive species have reshaped the composition of biomes across the globe, and considerable cost is now associated with minimising their ecological, social and economic impacts. Mammalian predators are among the most damaging invaders, having caused numerous species extinctions. Here, we review evidence of interactions between invasive predators and six key threats that together have strong potential to influence both the impacts of the predators, and their management. We show that impacts of invasive predators can be classified as either functional or numerical, and that they interact with other threats through both habitat- and community-mediated pathways. Ecosystem context and invasive predator identity are central in shaping variability in these relationships and their outcomes. Greater recognition of the ecological complexities between major processes that threaten biodiversity, including changing spatial and temporal relationships among species, is required to both advance ecological theory and improve conservation actions and outcomes. We discuss how novel approaches to conservation management can be used to address interactions between threatening processes and ameliorate invasive predator impacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The process of biological invasion exposes a species to novel pressures, in terms of both the environments it encounters and the evolutionary consequences of range expansion. Several invaders have been shown to exhibit rapid evolutionary changes in response to those pressures, thus providing robust opportunities to clarify the processes at work during rapid phenotypic transitions. The accelerating pace of invasion of cane toads (Rhinella marina) in tropical Australia during its 80-year history has been well characterized at the phenotypic level, including common-garden experiments that demonstrate heritability of several dispersal-relevant traits. Individuals from the invasion front (and their progeny) show distinctive changes in morphology, physiology and behaviour that, in combination, result in far more rapid dispersal than is true of conspecifics from long-colonized areas. The extensive body of work on cane toad ecology enables us to place into context studies of the genetic basis of these traits. Our analyses of differential gene expression from toads from both ends of this invasion-history transect reveal substantial upregulation of many genes, notably those involved in metabolism and cellular repair. Clearly, then, the dramatically rapid phenotypic evolution of cane toads in Australia has been accompanied by substantial shifts in gene expression, suggesting that this system is well suited to investigating the genetic underpinnings of invasiveness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasive mammalian predators are major drivers of species extinctions globally. To protect native prey, lethal control is often used with the aim of reducing or exterminating invasive predator populations. The efficacy of this practice, however, is often not considered despite multiple practical and ecological factors that can limit success. Here, we summarize contemporary knowledge regarding the use and challenges of both lethal control and alternative approaches for reducing invasive predator impacts. As the prevailing management approach, we outline four key issues that can compromise the effectiveness of lethal control: release of herbivore and mesopredator populations, disruption of predator social systems, compensatory predator immigration, and ethical concerns. We then discuss the relative merits and limitations of four alternative approaches that may enhance conservation practitioner's ability to effectively manage invasive predators: top-predator conservation or reintroduction, maintaining habitat complexity, exclusion fencing, and behavioral and evolutionary ecology. Considerable uncertainty remains regarding the effectiveness of management approaches in different environmental contexts. We propose that the deficiencies and uncertainties outlined here can be addressed through a combination of adaptive management, expert elicitation, and cost-benefit analyses. Improved management of invasive predators requires greater consideration and assessment of the full range of management approaches available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exotic animal and plant species introduced into the Australian continent often imparted catastrophic effects on the indigenous fauna and flora. Proponents of biological control introduced the South American Cane Toad (Bufo marinus) into the sugar cane fields of Queensland in 1935. The Cane Toad is one of the most toxic bufonids and when seized by naive Australian predators, the toxin usually kills the attacker. One group of Australian squamate reptiles that are very susceptible to Cane Toad toxins is varanid lizards. Prior to Cane Toad invasion of our study area, the Adelaide River floodplain of the Northern Territory of Australia, annual mortality of adult male radio-tagged yellow-spotted Goannas (Varanus panoptes) was very low. After the arrival of toads in October 2005, all radio-tracked goannas were found dead in August 2006, most likely attempting to feed on the toads. Our results suggest that invasive Cane Toads place naive adult male Yellow-spotted Goannas at risk of possibly >90% mortality. This increase in mortality could reduce the genetic diversity and hamper long-term survival of these large carnivorous lizards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological invasions often occur through expansion of satellite populations that become established at 'invasion hubs'. Invasion hubs can result from random dispersal events, but frequently arise when invading individuals actively choose habitats using cues that signify high-quality environments where the fitness consequences are positive. Theoretical studies suggest that targeted control at invasion hubs can effectively suppress the populations and impacts of invaders. In arid Australia, small dams that provide water for livestock function as invasion hubs by providing an invasive vertebrate, the cane toad Rhinella marina, with refuge from extreme aridity during the annual dry season. Toads are attracted to dams and use them as stepping stone habitats from which they disperse during rainy periods. Here, we ask whether sustained control of this invasive vertebrate can be achieved by converting invasion hubs into ecological traps. We did this by manipulating invasion hub habitats to induce a mismatch between toads' habitat preference and the fitness consequences of their habitat choice to cause high mortality. We constructed fences to exclude toads from dams and maintained these fences for 1 year. This period encompassed periods of dry and wet seasonal climatic conditions. Our manipulation did not alter the attractive cues for invading toads which died en masse while attempting to settle at fenced dams that prevented toads from reaching water. Toad populations at the fenced dams were suppressed by 1-2 orders of magnitude compared to unfenced controls and procedural controls. Toad populations remained suppressed for a year after exclusion. By excluding toads from dams, we converted invasion hubs into ecological traps and effectively thwarted the reinvasion of cane toads. Our research suggests that water exclusion devices could be used to prevent toad invasion or to control cane toad populations in arid landscapes colonized by toads. Synthesis and applications. Our study demonstrates that sustained control of invader populations can be achieved by restricting their access to invasion hubs. Control of invasive species via elimination of invasion hubs could be conducted reactively, to control established populations of invaders, or conducted strategically, by rendering invasion hubs unsuitable for colonization ahead of the invasion front to prevent further population spread.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The invasion pathways of pest arthropods can be traced using genetic tools to develop an understanding of the processes that have shaped successful invasions and to inform both pest management and conservation strategies in their non-native and native ranges, respectively. The redlegged earth mite, Halotydeus destructor, is a major economic pest in Australia, successfully establishing and spreading after arrival from South Africa more than 100 years ago. Halotydeus destructor has recently expanded its range and evolved resistance to numerous pesticides in Australia, raising questions around its origin and spread. Location: South Africa and Australia. Methods: We sampled H. destructor populations in South Africa and Australia and developed a microsatellite marker library. We then examined genetic variation using mtDNA and microsatellite markers across both native and invasive ranges to determine endemic genetic diversity within South Africa, identify the likely origin of invasive populations and test genetic divergence across Australia. Results: The data show that H. destructor comprises a cryptic species complex in South Africa, with putative climatic/host plant associations that may correspond to regional variation. A lineage similar to that found near Cape Town has spread throughout Western and eastern Australia, where populations remain genetically similar. Main conclusions: Tracing the invasion pathway of this economically important pest revealed cryptic lineages in South Africa which points to the need for a taxonomic revision. The absence of significant genetic structure across the wide invasive range of H. destructor within Australia has implications for the development (and spread) of pesticide resistance and also points to recent local adaptation in physiological traits.