9 resultados para biofuels

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data comprises experimental results relating to the characterization of biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report distilled technical cashew nut shell liquid (DT-CNSL) as a non-transesterified biofuel and also as an additive to convert triglycerides to biofuel, without the need for the formation of methyl esters. DT-CNSL blends of diesel obey physico-chemical parameters of diesel. DT-CNSL offers stability to blends of straight vegetable oil (SVO) and tallow oil in diesel. Fluorescence studies using charge transfer probes show that the blend of DT-CNSL, triglycerides and diesel is a uniform solution, and fluorescence behavior is similar to that of diesel. The economics for the cultivation of cashew (Anacardium occidentale), its industrial use and rich carbon sink properties indicate that DT-CNSL could complement or replace traditional biodiesel crops like Jatropha and improve income for farmers. © 2014 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manufacture of biofuels from existing biomass may provide a sustainable alternative to the extensive utilization of fossil fuels. Biomass offers environmental advantage over fossil fuels as it is a renewable energy source with low sulphur and nitrogen content and is carbon neutral over its production and utilization. Ranges of biomass are reported worldwide to be suitable raw material for bioethanol production. These can be generally classified into three groups; sucrose based (sugar cane), starch based (corn, wheat and barley) and lignocellulosic (which is mostly comprised of lignin, cellulose and hemicelluloses in grasses, wood and straw) materials. However, the limited supply of two biomass groups (sucrose and starch) will not satisfy society’s growing energy demands; thus biofuel technology based on lignocelluloses is under intense investigation. The main bottleneck in lignocellulosic biomass conversion for biofuel production is the enzymatic depolymerisation of cell wall polysaccharides into fermentable sugars. Protein engineering has recently been used to improve the performance of lignocelluloses degrading enzymes, as well as proteins involved in biofuel synthesis pathways. We have produced a recombinant enzyme that has the ability to produce monomeric sugars from a complex substrate. This presentation will summarize current efforts to develop an enzymatic treatment which would facilitate the economical processing of biomass available in Australia for bioenergy generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern about the environment, food and feed shortages and hike in the price of petroleum have stimulated interest in new ways of producing biofuels. The interest is rapidly increasing towards converting agricultural wastes to commercially valuable products. Biofuels made from waste biomass can offer immediate and sustained greenhouse gas advantages. In this direction, we are focusing on Citrus processing waste, a byproduct of juice manufacture, which contains high amount of flavonoids and polysaccharides. There is a considerable industrial interest in the enzymatic transformation of flavonoids to hydrolysis products; that offers a pathway to bio-energy generation. Rhamnosidase of bacterial origin are very few and thus are potentially subject for research.

Staphylococcus xylosus, Gram positive cocci, a nonpathogenic member of CNS family, isolated from soil was used to produce α-L-rhamnosidase. This new strain, so far unknown for the production of α-L-Rhamnosidase, was identified and characterized as Staphyloccocus sp. through biochemical tests and 16S DNA sequence analysis. Effect of various medium and process parameters like pH, temperature, aeration and agitation rates and inducer concentration were studied. Further, the enzyme activity was enhanced by adding the inducer and divalent metal ion to the optimised fermentation medium. We have recovered important sugars “rhamnose” and “galacturonic acid” from the processed waste which would be utilized for ethanol production. This presentation will summarize current efforts to develop an enzymatic treatment which would facilitate the economical processing of citrus waste for bioenergy generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thraustochytrids are a group of marine microbes well known for production of omega-3 fatty acids and other bioactive compounds. The purpose of this research project was to develop “downstream processing methods to extract lipids and lipases” from thraustochytrids and understanding their suitability in production of biofuels and nutraceuticals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microalgal species are potential resource of both biofuels and high-value metabolites, and their production is growth dependent. Growth parameters can be screened for the selection of novel microalgal species that produce molecules of interest. In this context our review confirms that, autotrophic and heterotrophic organisms have demonstrated a dual potential, namely the ability to produce lipids as well as value-added products (particularly carotenoids) under influence of various physico-chemical stresses on microalgae. Some species of microalgae can synthesize, besides some pigments, very-long-chain polyunsaturated fatty acids (VL-PUFA,>20C) such as docosahexaenoic acid and eicosapentaenoic acid, those have significant applications in food and health. Producing value-added by-products in addition to biofuels, fatty acid methyl esters (FAME), and lipids has the potential to improve microalgae-based biorefineries by employing either the autotrophic or the heterotrophic mode, which could be an offshoot of biotechnology. The review considers the potential of microalgae to produce a range of products and indicates future directions for developing suitable criteria for choosing novel isolates through bioprospecting large gene pool of microalga obtained from various habitats and climatic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis was focused on the development of nanostructured polymers for CO2 capture and energy storage applications, using polymerizable lyotropic liquid crystal. A combination of polarized optical microscopy, differential scanning calorimetry and Small-angle x-ray scattering has been used to characterize and understand the structure retention of these systems during photo-polymerization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bio prospecting of microalgal resources from diverse ecologically distinctive locations and better understanding of the physiological conditions of diverse habitats will enable us to better exploit these organisms for the production of lipid and carotenoids.The potential for coproduction of lipid and carotenoids, that may be benefical to human health have gained interest in recent decades. Methods for co-production and separating higher value compounds such as carotenoids and lipids can offset the cost of algal biofuel production, making this source more commercially viable.