173 resultados para basal metabolism

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the effect of temperature on resting metabolic rate in seven field-captured laughing kookaburras (Dacelo novaeguineae) during late winter and early spring. Basal metabolic rate averaged 201±3.4 ml O2 h–1 (0.603 ml O2 g–1 h–1). Overall thermal conductance (Ko) declined with ambient temperature (Ta) and averaged 0.026 ml O2 g–1 h–1 °C–1 at Tas<10 °C. Day-night differences in body temperatures (2.6 °C) and in alpha-phase versus rho-phase minimum metabolic rates were much greater (33%) than predicted for 340-g nonpasserine birds and suggest that these animals operate as low-metabolic intensity animals in their rest phase, but normal-metabolic intensity animals during their active phase. Metabolic rate was measured in four of the same birds undergoing moult. Thermal conductance increased to 60% above pre-moult values about 6 weeks after moult began. Basal metabolic rate of moulting birds showing peak thermal conductance readings averaged 17 ml O2 h–1 higher than pre-moult measurements. Although this increase was not statistically significant, we believe the moult costs of kookaburras are too low to overcome the inherent variability of BMR determination. We suggest that moult costs of kookaburras are only somewhat higher than the measured costs of protein synthesis of other endotherms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the muscle structure-function relationships that underlie the aerobic capacity of an insectivorous, small (~15?g) marsupial, Sminthopsis crassicaudata (Family: Dasyuridae), to obtain further insight into energy use patterns in marsupials relative to those in placentals, their sister clade within the Theria (advanced mammals). Disparate hopping marsupials (Suborder Macropodiformes), a kangaroo (Macropus rufus) and a rat-kangaroo (Bettongia penicillata), show aerobic capabilities as high as those of 'athletic' placentals. Equivalent muscle mitochondrial volumes and cardiovascular features support these capabilities. We examined S. crassicaudata to determine whether highly developed aerobic capabilities occur elsewhere in marsupials, rather than being restricted to the more recently evolved Macropodiformes. This was the case. Treadmill-trained S. crassicaudata attained a maximal aerobic metabolic rate (VO2,max or MMR) of 272ml O2min-1kg -1 (N=8), similar to that reported for a small (?20g), 'athletic' placental, Apodemus sylvaticus, 264ml O2min -1kg-1. Hopping marsupials have comparable aerobic levels when body mass variation is considered. Sminthopsis crassicaudata has a basal metabolic rate (BMR) about 75% of placental values but it has a notably large factorial aerobic scope (fAS) of 13, elevated fAS also features in hopping marsupials. The VO2,max of S. crassicaudata was supported by an elevated total muscle mitochondrial volume, which was largely achieved through high muscle mitochondrial volume densities, Vv(mt,f), the mean value being 14.0±1.33%. These data were considered in relation to energy use levels in mammals, particularly field metabolic rate (FMR). BMR is consistently lower in marsupials, but this is balanced by a high fAS, such that marsupial MMR matches that of placentals. However, FMR shows different mass relationships in the two clades, with the FMR of small (<, 125 g) marsupials, such as S. crassicaudata, being higher than that in comparably sized placentals, with the reverse applying for larger marsupials. The flexibility of energy output in marsupials provides explanations for this pattern. Overall, our data refute widely held notions of mechanistically closely linked relationships between body mass, BMR, FMR and MMR in mammals generally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preliminary research has suggested that wearable cameras may reduce under-reporting of energy intake (EI) in self-reported dietary assessment. The aim of the present study was to test the validity of a wearable camera-assisted 24 h dietary recall against the doubly labelled water (DLW) technique. Total energy expenditure (TEE) was assessed over 15 d using the DLW protocol among forty adults (n 20 males, age 35 (sd 17) years, BMI 27 (sd 4) kg/m2 and n 20 females, age 28 (sd 7) years, BMI 22 (sd 2) kg/m2). EI was assessed using three multiple-pass 24 h dietary recalls (MP24) on days 2-4, 8-10 and 13-15. On the days before each nutrition assessment, participants wore an automated wearable camera (SenseCam (SC)) in free-living conditions. The wearable camera images were viewed by the participants following the completion of the dietary recall, and their changes in self-reported intakes were recorded (MP24+SC). TEE and EI assessed by the MP24 and MP24+SC methods were compared. Among men, the MP24 and MP24+SC measures underestimated TEE by 17 and 9%, respectively (P< 0.001 and P= 0.02). Among women, these measures underestimated TEE by 13 and 7%, respectively (P< 0.001 and P= 0.004). The assistance of the wearable camera (MP24+SC) reduced the magnitude of under-reporting by 8% for men and 6% for women compared with the MP24 alone (P< 0.001 and P< 0.001). The increase in EI was predominantly from the addition of 265 unreported foods (often snacks) as revealed by the participants during the image review. Wearable cameras enhance the accuracy of self-report by providing passive and objective information regarding dietary intake. High-definition image sensors and increased imaging frequency may improve the accuracy further.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Low levels of daily energy expenditure (insufficient physical activity and increased sedentary time) have been associated with adverse health outcomes in young people. The Multimedia Activity Recall for Children and Adolescents (MARCA) is a computerized, self-report, use-of-time tool that can assess daily energy expenditure. The study aim was to validate the MARCA for the estimation of energy expenditure in young people, using the criterion standard doubly labeled water. MATERIALS/METHODS: Over a 15 day assessment period, 32 participants (10-18 years) completed the MARCA and underwent a doubly labeled water protocol. Indirect calorimetry was used to assess resting metabolic rate. Total daily energy expenditure (TEE) and activity-related energy expenditure (AEE) were estimated from both the MARCA and doubly labeled water. Association and agreement between methods for TEE and AEE were assessed using Spearman correlations and Bland-Altman plots, respectively. RESULTS: Compared to doubly labeled water, the MARCA over-estimated TEE by an average of 50 kcal/day (limits of agreement -1 589 to 1 490 kcal/day) and under-estimated AEE 105 kcal/day (limits of agreement -1 404 to 1 614 kcal/day). The MARCA showed strong correlation with doubly labeled water for TEE (rho=0.70, p<0.0001) and moderate correlation for AEE (rho=0.56, p=0.0009). CONCLUSIONS: Overall, the MARCA indicated moderate validity for the assessment of daily TEE and AEE. The wide limits of agreement indicate the MARCA has greater utility for group-level rather than individual-level estimates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased hepatic glucose output and decreased glucose utilization are implicated in the development of type 2 diabetes. We previously reported that the expression of a novel gene, Tanis, was upregulated in the liver during fasting in the obese/diabetic animal model Psammomys obesus. Here, we have further studied the protein and its function. Cell fractionation indicated that Tanis was localized in the plasma membrane and microsomes but not in the nucleus, mitochondria, or soluble protein fraction. Consistent with previous gene expression data, hepatic Tanis protein levels increased more significantly in diabetic P. obesus than in nondiabetic controls after fasting. We used a recombinant adenovirus to increase Tanis expression in hepatoma H4IIE cells and investigated its role in metabolism. Tanis overexpression reduced glucose uptake, basal and insulin-stimulated glycogen synthesis, and glycogen content and attenuated the suppression of PEPCK gene expression by insulin, but it did not affect insulin-stimulated insulin receptor phosphorylation or triglyceride synthesis. These results suggest that Tanis may be involved in the regulation of glucose metabolism, and increased expression of Tanis could contribute to insulin resistance in the liver.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-ß-D-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FAOX) blockade by methylpalmoxirate (MP; 5 x 12 hourly 10 mg/kg doses). During the basal equilibrium period (0–150 min), fasting dogs (n = 8) were infused with [3-3H]glucose followed by either 2-h saline or AICAR (1.5–2.0 mg·kg–1·min–1) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FAOX blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (Rd tissue), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCRg) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC~pSer221) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and Rd tissue responses were markedly attenuated, but MCRg and GF increased significantly. SkM substrates were unchanged, but ACC~pSer221 rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FAox blockade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMP-activated protein kinase (AMPK) is proposed to stimulate fat and carbohydrate catabolism to maintain cellular energy status. Recent studies demonstrate that pharmacologic activation of AMPK and mutations in the enzyme are associated with elevated muscle glycogen content in vivo. Our purpose was to determine the mechanism for increased muscle glycogen associated with AMPK activity in vivo. AMPK activity and glycogen metabolism were studied in red and white gastrocnemius muscles from rats treated with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) in vivo, and also in muscles incubated with AICAR in vitro. In vivo AICAR treatment reduced blood glucose and increased blood lactate compared with basal values. AICAR increased muscle α2 AMPK activity, glycogen, and glucose-6-phosphate concentrations. Glycogen synthase activity was increased in the red gastrocnemius but was decreased in the white gastrocnemius. Glycogen phosphorylase activity increased in both muscles, with an inhibition initially observed in the red gastrocnemius. In vitro incubation with AICAR activated α2 AMPK but had no effect on either glycogen synthase or glycogen phosphorylase. These results suggest that AICAR treatment does not promote glycogen accumulation in skeletal muscle in vivo by altering glycogen synthase and glycogen phosphorylase. Rather, the increased glycogen is due to the well-known effects of AICAR to increase glucose uptake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy conservation directed at accelerating body fat recovery (or catch-up fat) contributes to obesity relapse after slimming and to excess fat gain during catch-up growth after malnutrition. To investigate the mechanisms underlying such thrifty metabolism for catch-up fat, we tested whether during refeeding after caloric restriction rats exhibiting catch-up fat driven by suppressed thermogenesis have diminished skeletal muscle phosphatidylinositol-3-kinase (PI3K) activity or AMP-activated protein kinase (AMPK) signaling—two pathways required for hormone-induced thermogenesis in ex vivo muscle preparations. The results show that during isocaloric refeeding with a low-fat diet, at time points when body fat, circulating free fatty acids, and intramyocellular lipids in refed animals do not exceed those of controls, muscle insulin receptor substrate 1-associated PI3K activity (basal and in vivo insulin-stimulated) is lower than that in controls. Isocaloric refeeding with a high-fat diet, which exacerbates the suppression of thermogenesis, results in further reductions in muscle PI3K activity and in impaired AMPK phosphorylation (basal and in vivo leptin-stimulated). It is proposed that reduced skeletal muscle PI3K/AMPK signaling and suppressed thermogenesis are interdependent. Defective PI3K or AMPK signaling will reduce the rate of substrate cycling between de novo lipogenesis and lipid oxidation, leading to suppressed thermogenesis, which accelerates body fat recovery and furthermore sensitizes skeletal muscle to dietary fat-induced impairments in PI3K/AMPK signaling.—Summermatter, S., Mainieri, D., Russell, A. P., Seydoux, J., Montani, J. P., Buchala, A., Solinas, G., Dulloo, A. G. Thrifty metabolism that favors fat storage after caloric restriction: a role for skeletal muscle phosphatidylinositol-3-kinase activity and AMP-activated protein kinase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was conducted to evaluate the effect of different dietary lipid sources, age and sex on the SFA and MUFA metabolism in broiler chickens using a whole body fatty acid balance method. Four dietary lipid sources (palm fat, Palm; soyabean oil, Soya; linseed oil, Lin; and fish oil, Fish) were added at 3% to a basal diet containing 5% Palm. Diets were fed to female and male chickens from day 1 to either day 21 or day 42 of age. The accumulation (percentage of net intake and ex novo production) of SFA and MUFA was significantly lower in broilers fed on Palm than in broilers fed on the other diets (85·7 v. 97·4 %). Conversely, β-oxidation was significantly higher in Palm-fed birds than the average of the other dietary treatments (14·3 v. 2·6 %). On average, 33·1% of total SFA and MUFA accumulated in the body were elongated, and 13·8% were Δ-9 desaturated to longer chain or more unsaturated metabolites, with lower proportions being elongated and desaturated for the Palm and Fish diets than for the Soya and Lin diets. Total in vivo apparent elongase activity decreased exponentially in relation to the net intake of SFA and MUFA, while it increased with age. Total in vivo apparent Δ-9 desaturase activity was not significantly affected by dietary treatment or age. Total ex novo production and β-oxidation of SFA and MUFA showed a negative and positive curvilinear relationship with net intake of SFA and MUFA, respectively. Sex had no effect on SFA and MUFA metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PUFA metabolism in broiler chicken was studied through the whole body fatty acid balance method. Four dietary lipid sources (palm fat, Palm; soyabean oil, Soya; linseed oil, Lin; fish oil, Fish) were added at 3% to a basal diet containing 5% palm fat. Diets were fed to female and male birds from day 1 to either day 21 or day 42 of age. Birds fed the Lin diet showed a significantly higher 18 : 2n-6 accumulation compared with the other diets (85·2 v. 73·6% of net intake), whereas diet did not affect 18 : 3n-3 accumulation (mean 63% of net intake). Bioconversion of 18 : 2n-6 significantly decreased in the order Palm.> Lin > Soya > Fish (4·7, 3·9, 3·4 and 1% of net intake, respectively). The 18 : 3n-3 bioconversion on the Palm and Soya diets was similar and significantly higher than in broilers on the Lin diet (9·1 v. 5·8% of net intake). The β-oxidation of 18 : 2n-6 was significantly lower on the Lin diet than on the other diets (10·8 v. 23·3% of net intake), whereasβ-oxidation of 18 : 3n-3 was significantly higher on the Fish diet than on the other diets (41·5 v. 27·3% of net intake). Feeding fish oil suppressed apparent elongase and desaturase activity, whereas a higher dietary supply of 18 : 3n-3 and 18 : 2n-6 enhanced apparent elongation and desaturation activity on the PUFA involved in the n-3 and n-6 pathway, respectively. Accumulation of 18 : 2n-6 and 18 : 3n-3 increased andβ -oxidation decreased with age. Sex had a marginal effect on the PUFA metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canids form the most widely distributed family within the order Carnivora, with members present in a multitude of different environments from cold arctic to hot, dry deserts. We reviewed the literature and compared 24 data sets available on the basal metabolic rate (BMR) of 12 canid species, accounting for body mass and climate, to examine inter- and intraspecific variations in mass-adjusted BMR between 2 extreme climates (arctic and hot desert). Using both conventional and phylogenetically independent analysis of covariance, we found that canids from the arctic climate zone had significantly higher mass-adjusted BMR than species from hot deserts. Canids not associated with either arctic or desert climates had an intermediate and more variable mass-adjusted BMR. The climate effect also was significant at the intraspecific level in species for which we had data in 2 different climates. Arctic and desert climates represent contrasting combinations of ambient temperatures and water accessibility that require opposite physiological adaptations in terms of metabolism. The fact that BMR varies within species when individuals are subjected to different climate regimes further suggests that climate is an important determinant of BMR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To test the hypothesis that a 'basal plus' regimenadding once-daily main-meal fast-acting insulin to basal insulin once dailywould be non-inferior to biphasic insulin twice daily as assessed by glycated haemoglobin (HbA1c) concentration (predefined as ≤0.4%), but would provide superior treatment satisfaction. METHODS: This open-label trial enrolled adults to an 8- or 12-week run-in period, during which oral therapies except metformin were stopped and insulin glargine dose was titrated. Those with fasting glucose <7 mmol/l but HbA1c >7% (53 mmol/mol) were randomized to insulin glargine/glulisine once daily (n = 170) or insulin aspart/aspart protamine 30/70 twice daily (n = 165) for 24 weeks, with dose titration to glucose targets using standardized algorithms. RESULTS: For HbA1c, the basal plus regimen was non-inferior to biphasic insulin (least squares mean difference, 0.21%, upper 97.5% confidence limit 0.38%) meeting the predefined non-inferiority margin of 0.4%. Treatment satisfaction (Diabetes Treatment Satisfaction Questionnaire change version and Insulin Treatment Satisfaction Questionnaire total scores) significantly favoured basal plus. No difference was observed between the basal plus and the biphasic insulin groups in responders (HbA1c <7%, 20.6 vs 27.9%; p = 0.12), weight gain (2.06 vs 2.50 kg; p = 0.2), diabetes-specific quality of life (Audit of Diabetes-Dependent Quality of Life average weighted impact (AWI) score) and generic health status (five-dimension European Quality of Life questionnaire). Overall hypoglycaemia rates were similar between groups (15.3 vs 18.2 events/patient-year; p = 0.22); nocturnal hypoglycaemia was higher with the basal plus regimen (5.7 vs 3.6 events/patient-year; p = 0.02). CONCLUSION: In long-standing type 2 diabetes with suboptimal glycaemia despite oral therapies and basal insulin, the basal plus regimen was non-inferior to biphasic insulin for biomedical outcomes, with a similar overall hypoglycaemia rate but more nocturnal events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Life history theory suggests that species experiencing high extrinsic mortality rates allocate more resources toward reproduction relative to self-maintenance and reach maturity earlier ('fast pace of life') than those having greater life expectancy and reproducing at a lower rate ('slow pace of life'). Among birds, many studies have shown that tropical species have a slower pace of life than temperate-breeding species. The pace of life has been hypothesized to affect metabolism and, as predicted, tropical birds have lower basal metabolic rates (BMR) than temperate-breeding birds. However, many temperate-breeding Australian passerines belong to lineages that evolved in Australia and share 'slow' life-history traits that are typical of tropical birds. We obtained BMR from 30 of these 'old-endemics' and ten sympatric species of more recently arrived passerine lineages (derived from Afro-Asian origins or introduced by Europeans) with 'faster' life histories. The BMR of 'slow' temperate-breeding old-endemics was indistinguishable from that of new-arrivals and was not lower than the BMR of 'fast' temperate-breeding non-Australian passerines. Old-endemics had substantially smaller clutches and longer maximal life spans in the wild than new arrivals, but neither clutch size nor maximum life span was correlated with BMR. Our results suggest that low BMR in tropical birds is not functionally linked to their 'slow pace of life' and instead may be a consequence of differences in annual thermal conditions experienced by tropical versus temperate species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The regulation of microRNAs (miRNAs) at different stages of the progression of type 2 diabetes mellitus (T2DM) and their role in glucose homeostasis was investigated. METHODS: Microarrays were used to assess miRNA expression in skeletal muscle biopsies taken from healthy individuals and patients with pre-diabetes or T2DM, and insulin resistant offspring of rat dams fed a high fat diet during pregnancy. RESULTS: Twenty-three miRNAs were differentially expressed in patients with T2DM, and 7 in the insulin resistant rat offspring compared to their controls. Among these, only one miRNA was similarly regulated: miR-194 expression was significantly reduced by 25 to 50% in both the rat model and in human with pre-diabetes and established diabetes. Knockdown of miR-194 in L6 skeletal muscle cells induced an increase in basal and insulin-stimulated glucose uptake and glycogen synthesis. This occurred in conjunction with an increased glycolysis, indicated by elevated lactate production. Moreover, oxidative capacity was also increased as we found an enhanced glucose oxidation in presence of the mitochondrial uncoupler FCCP. When miR-194 was down-regulated in vitro, western blot analysis showed an increased phosphorylation of AKT and GSK3β in response to insulin, and an increase in expression of proteins controlling mitochondrial oxidative phosphorylation. CONCLUSIONS: Type 2 diabetes mellitus is associated with regulation of several miRNAs in skeletal muscle. Interestingly, miR-194 was a unique miRNA that appeared regulated across different stages of the disease progression, from the early stages of insulin resistance to the development of T2DM. We have shown miR-194 is involved in multiple aspects of skeletal muscle glucose metabolism from uptake, through to glycolysis, glycogenesis and glucose oxidation, potentially via mechanisms involving AKT, GSK3 and oxidative phosphorylation. MiR-194 could be down-regulated in patients with early features of diabetes as an adaptive response to facilitate tissue glucose uptake and metabolism in the face of insulin resistance.