98 resultados para avian malaria

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pathogen exposure has been suggested as one of the factors shaping the myriad of migration strategies observed in nature. Two hypotheses relate migration strategies to pathogen infection: the 'avoiding the tropics hypothesis' predicts that pathogen prevalence and transmission increase with decreasing non-breeding (wintering) latitude, while the "habitat selection hypothesis" predicts lower pathogen prevalence in marine than in freshwater habitats. We tested these scarcely investigated hypotheses by screening wintering and resident wading shorebirds (Charadriiformes) for avian malaria blood parasites (Plasmodium and Haemoproteus spp.) along a latitudinal gradient in Australia. We sequenced infections to determine if wintering migrants share malaria parasites with local shorebird residents, and we combined prevalence results with published data in a global comparative analysis. Avian malaria prevalence in Australian waders was 3.56% and some parasite lineages were shared between wintering migrants and residents, suggesting active transmission at wintering sites. In the global dataset, avian malaria prevalence was highest during winter and increased with decreasing wintering latitude, after controlling for phylogeny. The latitudinal gradient was stronger for waders that use marine and freshwater habitats (marine + freshwater) than for marine-restricted species. Marine + freshwater wader species also showed higher overall avian malaria parasite prevalence than marine-restricted species. By combining datasets in a global comparative analysis, we provide empirical evidence that migratory waders avoiding the tropics during the non-breeding season experience a decreased risk of malaria parasite infection. We also find global support for the hypothesis that marine-restricted shorebirds experience lower parasite pressures than shorebirds that also use freshwater habitats. Our study indicates that pathogen transmission may be an important driver of site selection for non-breeding migrants, a finding that contributes new knowledge to our understanding of how migration strategies evolve.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Migratory birds make decisions about how far to travel based on cost-benefit trade-offs. However, in many cases the net effect of these trade-offs is unclear. We sought to address this question by measuring feather corticosterone (CORTf), leucocyte profile, avian malaria parasite prevalence and estimating fueling rates in three spatially segregated wintering populations of the migratory shorebird ruddy turnstone Arenaria interpres during their stay in the winter habitat. These birds fly from the high-Arctic breeding ground to Australia, but differ in that some decide to end their migration early (Broome, Western Australia), whereas others travel further to either South Australia or Tasmania. We hypothesized that the extra costs in birds migrating greater distances and overwintering in colder climates would be offset by benefits when reaching their destination. This would be evidenced by lower stress biomarkers in populations that travel further, owing to the expected benefits of greater resources and improved vitality. We show that avian malaria prevalence and physiological stress levels were lower in birds flying to South Australia and Tasmania than those overwintering in Broome. Furthermore, our modeling predicts that birds in the southernmost locations enjoy higher fueling rates. Our data are consistent with the interpretation that birds occupying more costly wintering locations in terms of higher migratory flight and thermoregulatory costs are compensated by better feeding conditions and lower blood parasite infections, which facilitates timely and speedy migration back to the breeding ground. These data contribute to our understanding of cost-benefit trade-offs in the decision making underlying migratory behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcγRI. This important finding documents the capacity of FcγRI to mediate potent antimalaria immunity and supports the development of FcγRI-directed therapy for human malaria.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The management of urban environments is an increasingly important issue on an international scale as humans emigrate from rural areas to cities. Designing cities that can sustain mass human expansion while maintaining biodiversity is becoming an increasingly complex challenge for land managers. This is largely due to the lack of knowledge on how urbanization impacts upon biodiversity. Our previous research has highlighted the importance of urban remnant vegetation for avian diversity, but also suggested that landscape scale influences may have considerable impacts on the ability for a remnant to sustain species. We have since conducted a study examining avian diversity in 38 urban remnants ranging in size from 5ha to 107ha. These sites vary in relation to the quality of vegetation in the patch and their level of isolation from other remnant patches. This talk discusses the relative influences of remnant patch size, vegetation quality and isolation on avian diversity in urban remnant vegetation. We discuss how the findings of this research could be applied to managing avian diversity in the urban landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While urban areas are increasingly recognized as having potential value for biodiversity conservation, the relationship between biodiversity and the structure and configuration of the urban landscape is poorly understood. In this study we surveyed birds in 39 remnant patches of native vegetation of various sizes (range 1–107 ha) embedded in the suburban matrix in Melbourne, Australia. The total richness of species within remnants was strongly associated with the size of remnants. Remnant-reliant species displayed a much stronger response to remnant area than matrix-tolerant species indicating the importance of large remnants in maintaining representative bird assemblages. Large remnants are important for other ecological groups of species including migratory species, ground foraging birds and canopy foraging birds. Other landscape (e.g. amount of riparian vegetation) and structural components (e.g. shrub cover) of remnants have a lesser role in determining the richness of individual remnants. This research provides conservation managers and planners with a hierarchical process to reserve design and management in order to conserve the highest richness of native species within urban areas. First of all, conservation efforts should preferentially focus on the retention of larger remnants of native vegetation. Second, where possible, riparian vegetation should be included within reserves or, where it is already present, should be carefully managed to ensure its integrity. Third, efforts should be focused at maintaining appropriate habitat and vegetation structure and complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholinesterase-inhibiting pesticides are applied throughout Australia to control agricultural pests. Blood plasma cholinesterase (ChE) activity is a sensitive indicator of exposure to organophosphorus insecticides in vertebrates. To aid biomonitoring and provide reference data for wildlife pesticide-risk assessment, plasma acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were characterised in nine species of native bird: King Quails (Excalfactoria chinensis), Budgerigars (Melopsittacus undulatus), White-plumed Honeyeaters (Lichenostomas penicillatus), Yellow-throated Miners (Manorina flavigula), Willie Wagtails (Rhipidura leucophrys), Australian Reed-Warblers (Acrocephalus australis), Brown Songlarks (Cincloramphus cruralis), Double-barred Finches (Taeniopygia bichenovii) and Australasian Pipits (Anthus novaeseelandiae). Plasma ChE activities in all species were within the range of most other avian species and all but one contained AChE and BChE; no AChE was present in King Quail, which has not previously been reported for any species. The lowest detectable plasma AChE activity was 0.10 μmol min–1 mL–1 in Budgerigars and the highest was 0.86 μmol min–1 mL–1 in Australian Reed-Warblers. BChE in the plasma ranged from 0.37 μmol min–1 mL–1 in Double-barred Finches to 0.90 μmol min–1 mL–1 in White-plumed Honeyeaters and Australian Reed-Warblers. The lowest proportion of AChE was found in Budgerigars (12.8%) and highest in Willie Wagtails (67.8%). No differences were detected in ChE activity at any time of day in Budgerigars and Zebra Finches (Taeniopygia guttata), although there was a significant difference in all ChE activity between seasons in Zebra Finches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of fenitrothion exposure on birds was examined by measuring aerobic metabolism, blood hemoglobin content, plasma cholinesterases, and body weight for up to 21 d postdose. Peak metabolic rate was measured in a flight chamber in three-dose groups of house sparrows (Passer domesticus; 100 mg/kg = high, 60 mg/kg = medium, 30 mg/kg = low) and one-dose groups of zebra finches (Taeniopygia guttata; 3 mg/kg) and king quails (Coturnix chinensis; 26 mg/kg). Aerobic metabolism was measured during 1 h of exposure to subfreezing thermal conditions in low-dose house sparrows and king quails (26 mg/kg). Fenitrothion had no effect on metabolic rate during cold exposure or on blood hemoglobin at any time. By contrast, aerobic performance during exercise in sparrows was reduced by 58% (high), 18% (medium), and 20% (low), respectively, 2 d postdose. House sparrows (high) had the longest recovery period for peak metabolic rate (21 d) and plasma cholinesterase activity (14 d). House sparrows (high) and treated king quails had significantly lower myoglobin at 48 h postdose, whereas myoglobin was invariant in zebra finches and house sparrows (medium and low). Cholinesterase was maximally inhibited at 6 h postdose, and had recovered within 24 h, in house sparrows (low), king quails, and zebra finches. Exercise peak metabolic rate in zebra finches and king quails was reduced by 23% at 2 d and 3 d, respectively, despite these birds being asymptomatic in both behavior and plasma cholinesterase activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the effects of cage size and testosterone (T) levels on basal and peak metabolic rates (BMR and PMR, respectively) and on pectoral and leg muscle masses of male house sparrows (Passer domesticus). Birds were housed either in small birdcages or in flight aviaries for at least 2 weeks prior to the initial metabolic evaluations. They were then implanted with either empty or T-filled silastic capsules and remeasured 5–6 weeks later. Birds treated with single T implants achieved breeding levels (4–6 ng/mL) and one group given double implants reached 10 ng/mL. There was no effect of T on BMR or PMR in any group studied, but there was an effect of caging. Caged birds showed significant reductions in PMR over the course of captivity, whereas PMR in aviary-housed birds were indistinguishable from their free-living counterparts. Testosterone treatment significantly increased leg muscle mass in caged birds, but had no effect on muscle mass in aviary-housed sparrows. We conclude that testosterone has no direct effect on sparrow metabolic rate or muscle mass, but may interact with cage conditions to produce indirect changes to these variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is now considerable evidence that female choice drives the evolution of song complexity in many songbird species. However, the underlying basis for such choice remains controversial. The developmental stress hypothesis suggests that early developmental conditions can mediate adult song complexity by perturbing investment in the underlying brain nuclei during their initial growth. Here, we show that adult male canaries (Serinus canaria), infected with malaria (Plasmodium relictum) as juveniles, develop simpler songs as adults compared to uninfected individuals, and exhibit reduced development of the high vocal centre (HVC) song nucleus in the brain. Our results show how developmental stress not only affects the expression of a sexually selected male trait, but also the structure of the underlying song control pathway in the brain, providing a direct link between brain and behaviour. This novel experimental evidence tests both proximate and ultimate reasons for the evolution of complex songs and supports the Hamilton–Zuk hypothesis of parasite-mediated sexual selection. Together, these results propose how developmental costs may help to explain the evolution of honest advertising in the complex songs of birds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fipronil, a phenyl pyrazole pesticide, is aerially applied in semi-arid and agricultural areas of Australia to control locust outbreaks. Locust populations build to plague proportions when rainfall occurs in late winter and spring, promoting early vegetation growth. These conditions also attract breeding birds. Over 100 species have been observed coincident with locust control operations. Avian exposure to fipronil occurs via direct contact and by ingesting contaminated insects or seeds. Avian toxicity information demonstrates there is high species-specific variability in fipronil sensitivity in the few avian species studied. There is no research, however, explaining this variability, nor is there research regarding physiological or behavioural sub-lethal effects on avian species. This makes it extremely difficult to predict the toxicity of fipronil on unstudied species at high risk of exposure. Our research aims to resolve this lack of essential information in two ways: firstly we examine whether fipronil has identifiable sublethal effects in exposed birds and their offspring that compromise population health, and secondly evaluate avian metabolism of fipronil in selected species to gain insight into the mechanisms underlying variation in species sensitivity. Our results provide critically needed information for evaluating field effects of locust-control spraying in Australia.