4 resultados para automatic virtual camera

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robots are ever increasing in a variety of different workplaces providing an array of benefits such alternative solutions to traditional human labor. While developing fully autonomous robots is the ultimate goal in many robotic applications the reality is that there still exist many situationswere robots require some level of teleoperation in order to achieve assigned goals especially when deployed in non-deterministic environments. For instance teleoperation is commonly used in areas such as search and rescue, bomb disposal and exploration of inaccessible or harsh terrain. This is due to a range of factors such as the lack of ability for robots to quickly and reliably navigate unknown environments or provide high-level decision making especially intime critical tasks. To provide an adequate solution for such situations human-in-the-loop control is required. When developing human-in-the-loop control it is important to take advantage of the complimentary skill-sets that both humans and robots share. For example robots can performrapid calculations, provide accurate measurements through hardware such as sensors and store large amounts of data while humans provide experience, intuition, risk management and complex decision making capabilities. Shared autonomy is the concept of building robotic systems that take advantage of these complementary skills-sets to provide a robust an efficient robotic solution. While the requirement of human-in-the-loop control exists Human Machine Interaction (HMI) remains an important research topic especially the area of User Interface (UI) design.In order to provide operators with an effective teleoperation system it is important that the interface is intuitive and dynamic while also achieving a high level of immersion. Recent advancements in virtual and augmented reality hardware is giving rise to innovative HMI systems. Interactive hardware such as Microsoft Kinect, leap motion, Oculus Rift, Samsung Gear VR and even CAVE Automatic Virtual Environments [1] are providing vast improvements over traditional user interface designs such as the experimental web browser JanusVR [2]. This combined with the introduction of standardized robot frameworks such as ROS and Webots [3] that now support a large number of different robots provides an opportunity to develop a universal UI for teleoperation control to improve operator efficiency while reducing teleoperation training.This research introduces the concept of a dynamic virtual workspace for teleoperation of heterogeneous robots in non-deterministic environments that require human-in-the-loop control. The system first identifies the connected robots through the use kinematic information then determines its network capabilities such as latency and bandwidth. Given the robot type and network capabilities the system can then provide the operator with available teleoperation modes such as pick and place control or waypoint navigation while also allowing them to manipulate the virtual workspace layout to provide information from onboard camera’s or sensors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes an application of camera motion estimation to index cricket games. The shots are labeled with the type of shot: glance left, glance right, left drive, right drive, left cut, right pull and straight drive. The method has the advantages that it is fast and avoids complex image segmentation. The classification of the cricket shots is done using an incremental learning algorithm. We tested the method on over 600 shots and the results show that the system has a classification accuracy of 74%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reports the establishment of a pilot ‘virtual clinic’ in a rural region of Victoria, Australia. Using low-cost videophones that work across ordinary phone lines, together with off-the-shelf (mostly automatic) clinical tools, local volunteers have been trained to mediate a virtual consultation between simulated patients and local GPs. This system has the potential to save long trips into town by such patients since the traditional ‘home visit’ is not feasible, as well as to provide regular home monitoring for those with chronic conditions. This in turn should impact favourably on ambulance deployment, sometimes enabling patients to avoid going to hospital or allowing them to come home sooner than otherwise would be the case, and generally to offer a sense of medical security to those living in isolated regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A camera based machine vision system for the automatic inspection of surface defects in aluminum die casting is presented. The system uses a hybrid image processing algorithm based on mathematic morphology to detect defects with different sizes and shapes. The defect inspection algorithm consists of two parts. One is a parameter learning algorithm, in which a genetic algorithm is used to extract optimal structuring element parameters, and segmentation and noise removal thresholds. The second part is a defect detection algorithm, in which the parameters obtained by a genetic algorithm are used for morphological operations. The machine vision system has been applied in an industrial setting to detect two types of casting defects: parts mix-up and any defects on the surface of castings. The system performs with a 99% or higher accuracy for both part mix-up and defect detection and is currently used in industry as part of normal production.