27 resultados para arts as expression of the ineffable

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This workshop will focus on the ways in which ollr Journal Double Dialogues dealt with the question of the 'Anatomy of Pain'. In this workshop, by a process of demonstration and interaction, we will look at the theme of the representation of pain and engage with the ways in which different disciplines (psychological. visual, performative, philosophical. aesthetic and literary) explored this question. Emphasis will be given to the 'double dialogue' nature of the discourse in which practitioners of the arts have found a 'language' from aesthetics, history, theory, and philosophy that has succeeded in establishing a dialogue between the art-work and the discourse that might spring from the work itself or provide a relevant context. This session will draw on the e.xpertise of the audience for discussions and experiment within the Double Dialogue model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease is characterized by the accumulation of amyloid-ß peptide, which is cleaved from the amyloid-ß precursor protein (APP). Reduction in levels of the potentially toxic amyloid-ß has emerged as one of the most important therapeutic goals in Alzheimer's disease. Key targets for this goal are factors that affect the regulation of the APP gene. Recent in vivo and in vitro studies have illustrated the importance of copper in Alzheimer's disease neuropathogenesis and suggested a role for APP and amyloid-ß in copper homeostasis. We hypothesized that metals and in particular copper might alter APP gene expression. To test the hypothesis, we utilized human fibroblasts overexpressing the Menkes protein (MNK), a major mammalian copper efflux protein. MNK deletion fibroblasts have high intracellular copper, whereas MNK overexpressing fibroblasts have severely depleted intracellular copper. We demonstrate that copper depletion significantly reduced APP protein levels and down-regulated APP gene expression. Furthermore, APP promoter deletion constructs identified the copper-regulatory region between -490 and +104 of the APP gene promoter in both basal MNK overexpressing cells and in copper-chelated MNK deletion cells. Overall these data support the hypothesis that copper can regulate APP expression and further support a role for APP to function in copper homeostasis. Copper-regulated APP expression may also provide a potential therapeutic target in Alzheimer's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The disintegrin metalloprotease ADAM-10 is a multidomain metalloprotease that is potentially significant in tumor progression due to its extracellular matrix-degrading properties. Previously, ADAM-10 mRNA was detected in prostate cancer (PCa) cell lines; however, the presence of ADAM-10 protein and its cellular localization, regulation, and role have yet to be described. We hypothesized that ADAM-10 mRNA and protein may be regulated by growth factors such as 5α-dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor, known modulators of PCa cell growth and invasion.

Experimental Design: ADAM-10 expression was analyzed by in situ hybridization and immunohistochemistry in prostate tissues obtained from 23 patients with prostate disease. ADAM-10 regulation was assessed using quantitative reverse transcription-PCR and Western blot analysis in the PCa cell line LNCaP.

Results: ADAM-10 expression was localized to the secretory cells of prostate glands, with additional basal cell expression in benign glands. ADAM-10 protein was predominantly membrane bound in benign glands but showed marked nuclear localization in cancer glands. By Western blot, the 100-kDa proform and the 60-kDa active form of ADAM-10 were synergistically up-regulated in LNCaP cells treated with insulin-like growth factor I plus 5α-dihydrotestosterone. Epidermal growth factor also up-regulated both ADAM-10 mRNA and protein.

Conclusions: This study describes for the first time the expression, regulation, and cellular localization of ADAM-10 protein in PCa. The regulation and membrane localization of ADAM-10 support our hypothesis that ADAM-10 has a role in extracellular matrix maintenance and cell invasion, although the potential role of nuclear ADAM-10 is not yet known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survivin is a dual functioning protein. It inhibits the apoptosis of cancer cells by inhibiting caspases, and also promotes cancer cell growth by stabilizing microtubules during mitosis. Since the molecular chaperone Hsp90 binds and stabilizes survivin, it is widely believed that down-regulation of survivin is one of the important therapeutic functions of Hsp90 inhibitors such as the phase III clinically trialed compound 17-AAG. However, Hsp90 interferes with a number of molecules that up-regulate the intracellular level of survivin, raising the question that clinical use of Hsp90 inhibitors may indirectly induce survivin expression and subsequently enhance cancer anti-drug responses. The purpose of this study is to determine whether targeting Hsp90 can alter survivin expression differently in different cancer cell lines and to explore possible mechanisms that cause the alteration in survivin expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported that Pseudomonas aeruginosa PA14 secretes a protein that can reduce the apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Here we report that we have used a proteomic approach to identify this secreted protein as PA2394, and we have named the gene cif, for CFTR inhibitory factor. We demonstrate that Cif is a secreted protein and is found associated with outer membrane-derived vesicles. Expression of Cif in Escherichia coli and purification of the C-terminal six-His-tagged Cif protein showed that Cif is necessary and sufficient to mediate the reduction in apical membrane expression of CFTR and a concomitant reduction in CFTR-mediated Cl− ion secretion. Cif demonstrates epoxide hydrolase activity in vitro and requires a highly conserved histidine residue identified in α/β hydrolase family enzymes to catalyze this reaction. Mutating this histidine residue also abolishes the ability of Cif to reduce apical membrane CFTR expression. Finally, we demonstrate that the cif gene is expressed in the cystic fibrosis (CF) lung and that nonmucoid isolates of P. aeruginosa show greater expression of the gene than do mucoid isolates. We propose a model in which the Cif-mediated decrease in apical membrane expression of CFTR by environmental isolates of P. aeruginosa facilitates the colonization of the CF lung by this microbe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper (Cu) has a critical role in the generation of oxidative stress during neurodegeneration and cancer. Reactive oxygen species generated through abnormal elevation or deficiency of Cu can lead to lipid, protein, and DNA damage. Oxidation of DNA can induce strand breaks and is associated with altered cell fate including transformation or death. DNA repair is mediated through the action of the multimeric DNA-PK repair complex. The components of this complex are the Ku autoantigens, XRCC5 and XRCC6 (Ku80 and Ku70, respectively). How this repair complex responds to perturbed Cu homeostasis and Cu-mediated oxidative stress has not been investigated. We previously reported that XRCC5 expression is altered in response to cellular Cu levels, with low Cu inhibiting XRCC5 expression and high Cu levels enhancing expression. In this study we further investigated the interaction between XRCC5 and Cu. We report that cytosolic XRCC5 is increased in response to Cu, but not zinc, iron, or nickel, and the level of cytosolic XRCC5 correlates with protection against oxidative damage to DNA. These observations were made in both HeLa cells and fibroblasts. Cytosolic XRCC5 interacted with the Cu chaperone and detoxification protein human Atox1 homologue (HAH), and down regulation of XRCC5 expression using siRNA led to enhanced HAH expression when cells were exposed to Cu. XRCC5 could also be purified from cytosolic extracts using a Cu-loaded column. These findings provide further evidence that cytosolic XRCC5 has a key role in protection against DNA oxidation from Cu, through either direct sequestration or signaling through other Cu-detoxification molecules. Our findings have important implications for the development of therapeutic treatments targeting Cu in neurodegeneration and/or cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphorylated sperm proteins are crucial for sperm maturation and capacitation as a priori to their fertilization with eggs. In the freshwater prawn, Macrobrachium rosenbergii, a male reproduction-related protein (Mar-Mrr) was known to be expressed only in the spermatic ducts as a protein with putative phosphorylation and may be involved in sperm capacitation in this species. We investigated further the temporal and spatial expression of the Mar-Mrr gene using RT-PCR and in situ hybridization and the characteristics and fate of the protein using immunblotting and immunocytochemistry. The Mar-Mrr gene was first expressed in 4-week-old post larvae and the protein was produced in epithelial cells lining the spermatic ducts, at the highest level in the proximal region and decreased in the middle and distal parts. The native protein had a MW of 17 kDa and a high degree of serine/threonine phosphorylation. It was transferred from the epithelial cells to become a major protein at the anterior region of the sperm. We suggest that it is involved in sperm capacitation and fertilization in this open thelycal species and this is being investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haemoglobin degradation during the erythrocytic life stages is the major function of the food vacuole (FV) of Plasmodium falciparum and the target of several anti-malarial drugs that interfere with this metabolic pathway, killing the parasite. Two multi-spanning food vacuole membrane proteins are known, the multidrug resistance protein 1 (PfMDR1) and Chloroquine Resistance Transporter (PfCRT). Both modulate resistance to drugs that act in the food vacuole. To investigate the formation and behaviour of the food vacuole membrane we have generated inducible GFP fusions of chloroquine sensitive and resistant forms of the PfCRT protein. The inducible expression system allowed us to follow newly-induced fusion proteins, and corroborated a previous report of a direct trafficking route from the ER/Golgi to the food vacuole membrane. These parasites also allowed the definition of a food vacuole compartment in ring stage parasites well before haemozoin crystals were apparent, as well as the elucidation of secondary PfCRT-labelled compartments adjacent to the food vacuole in late stage parasites. We demonstrated that in addition to previously demonstrated Brefeldin A sensitivity, the trafficking of PfCRT is disrupted by Dynasore, a non competitive inhibitor of dynamin-mediated vesicle formation. Chloroquine sensitivity was not altered in parasites over-expressing chloroquine resistant or sensitive forms of the PfCRT fused to GFP, suggesting that the PfCRT does not mediate chloroquine transport as a GFP fusion protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian placentation is a vital facet of the development of a healthy and viable offspring. Throughout gestation the placenta changes to accommodate, provide for, and meet the demands of a growing fetus. Gestational gene expression is a crucial part of placenta development. The endocannabinoid pathway is activated in the placenta and decidual tissues throughout pregnancy and aberrant endocannabinoid signaling during the period of placental development has been associated with pregnancy disorders. In this study, the gene expression of eight endocannabinoid system enzymes was investigated throughout gestation. Rat placentae were obtained at E14.25, E15.25, E17.25, and E20, RNA was extracted, and microarray was performed. Gene expression of enzymes Faah, Mgll, Plcd4, Pld1, Nat1, Daglα, and Ptgs2 was studied (cohort 1, microarray). Biological replication of the results was performed by qPCR (cohort 2). Four genes showed differential expression (Mgll, Plcd4, Ptgs2, and Pld1), from mid to late gestation. Genes positively associated with gestational age were Ptgs2, Mgll, and Pld1, while Plcd4 was downregulated. This is the first comprehensive study that has investigated endocannabinoid pathway gene expression during rat pregnancy. This study provides the framework for future studies that investigate the role of endocannabinoid system during pregnancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the mRNA expression of the atrial natriuretic peptide (ANP) system (peptide and receptors) during water deprivation in the spinifex hopping mouse, Notomys alexis, a native of central and western Australia that is well adapted to survive in arid environments. Initially, ANP, NPR-A and NPR-C cDNAs (partial for receptors) were cloned and sequenced, and were shown to have high homology with those of rat and mouse. Using a semi-quantitative multiplex PCR technique, the expression of cardiac ANP mRNA and renal ANP, NPR-A, and NPR-C mRNA was determined in 7- and 14-day water-deprived hopping mice, in parallel with control mice (access to water). The levels of ANP mRNA expression in the heart remained unchanged, but in the kidney ANP mRNA levels were increased in the 7-day water-deprived mice, and were significantly decreased in the 14-day water-deprived mice. NPR-A mRNA levels were significantly higher in 7-day water-deprived mice while no change for NPR-A mRNA expression was observed in 14-day water-deprived mice. No variation in NPR-C mRNA levels was observed. This study shows that water deprivation differentially affects the expression of the ANP system, and that renal ANP expression is more important than cardiac ANP in the physiological adjustment to water deprivation.