7 resultados para anti-coincident functions

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products.

Results: Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1β and TNF-α) and up-regulated IFN-γ, IL-2 and IL-10.

Conclusion: Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel disease (IBD). Stimulation of normal human fetal intestinal cell proliferation without cell cytotoxicity indicates it may also be given as infant food particularly for premature babies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Suppressor of cytokine signaling (SaCS) proteins have been identified as key negative regulators of cytokine and growth factor signaling. Therefore, given the diverse roles played by cytokines and growth factors in development and disease, it is not surprising that the sacs proteins themselves possess equally diverse and important functions, such as the control of hematopoiesis, immune function, growth and placental development. Significantly, more recent studies are increaSingly highlighting the crucial roles played by SOCS proteins in disease, particularly their tumor suppressor and anti-infammatory functions. Collectively, this research has served to confirm the importance of this class of proteins and suggests that therapeutic strategies for modulating SOCS proteins might be relevant for a range of diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytokine and growth factor signaling mediates essential roles in the differentiation, proliferation, survival and function of a number of cell lineages. This is achieved via specific receptors located on the surface of target cells, with ligand binding activating key intracellular signal transduction cascades to mediate the requisite cellular outcome. Effective resolution of receptor signaling is also essential, with excessive signaling having the potential for pathological consequences. The Suppressor of cytokine signaling (SOCS) family of proteins represent one important mechanism to extinguish cytokine and growth factor receptor signaling. There are 8 SOCS proteins in mammals; SOCS1-7 and the alternatively named Cytokine-inducible SH2-containing protein (CISH). SOCS1-3 and CISH are predominantly associated with the regulation of cytokine receptor signaling, while SOCS4-7 are more commonly involved in the control of Receptor tyrosine kinase (RTK) signaling. Individual SOCS proteins are typically induced by specific cytokines and growth factors, thereby generating a negative feedback loop. As a consequence of their regulatory properties, SOCS proteins have important functions in development and homeostasis, with increasing recognition of their role in disease, particularly their tumor suppressor and anti-inflammatory functions. This review provides a synthesis of our current understanding of the SOCS family, with an emphasis on their immune and hematopoietic roles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Air-permeable, super-liquid-repellent fabrics show strong resistance to various liquid fluids and have self-cleaning, anti-sticking, and anti-contaminating functions, which are very useful for development of function clothing. However, most of the liquid repellent fabrics are poor in durability.This book elaborated the development of durable super-liquid-repellent fabrics and explore novel property of liquid-repellent fabrics. It has resulted in two novel concepts to prepare durable liquid repellent fabrics. By combining liquid repellent with liquid absorbing features on different sides of single layer fabric, a novel directional-fluid transport property was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survivin is a dual functioning protein. It inhibits the apoptosis of cancer cells by inhibiting caspases, and also promotes cancer cell growth by stabilizing microtubules during mitosis. Since the molecular chaperone Hsp90 binds and stabilizes survivin, it is widely believed that down-regulation of survivin is one of the important therapeutic functions of Hsp90 inhibitors such as the phase III clinically trialed compound 17-AAG. However, Hsp90 interferes with a number of molecules that up-regulate the intracellular level of survivin, raising the question that clinical use of Hsp90 inhibitors may indirectly induce survivin expression and subsequently enhance cancer anti-drug responses. The purpose of this study is to determine whether targeting Hsp90 can alter survivin expression differently in different cancer cell lines and to explore possible mechanisms that cause the alteration in survivin expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptosis occurs via extrinsic or intrinsic signalling each triggered and regulated by many different molecular pathways. In recent years, the selective induction of apoptosis through survivin in tumour cells has been increasingly recognized as a promising approach for cancer therapy. Survivin has multiple functions including cytoprotection, inhibition of cell death, and cell-cycle regulation, especially at the mitotic process stage, all of which favour cancer survival. Many studies on clinical specimens have shown that survivin over expression is invariably up regulated in human cancers, associated with resistance to chemotherapy or radiation therapy, and linked to poor prognosis, suggesting that cancer cells survive with survivin. On the basis of these findings, survivin has been proposed as an attractive target for new anticancer interventions. Survivin inhibitors recently entered clinical trials. Recent studies suggest a possible role for survivin in regulating the function of normal adult cells. However, the expression and function of survivin in normal tissues are still not well characterized and understood. Still better understandings of survivin's role in tumour versus normal cells are needed for designing the strategies to selectively disrupt survivin in cancers. In the present review, we summarise the importance of recent survivin-targeted cancer therapy for future clinical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Angiogenesis is a complex multistep process of formation of new blood vessels. Interactions between several cellular factors including growth factors, cytokines and haematopoietic factors lead to activation of various cellular pathways, finally resulting in extracellular matrix (ECM) degradation, endothelial cell proliferation, survival and migration. Normally, angiogenesis is an essential requirement for vascular development in growing embryos as well as in adult tissues, where this process depends on the intricate balance between the activities of the pro- and anti-angiogenic factors. Abnormal angiogenesis results in aberrant vasculature leading to various pathological conditions. The most important factor implicated in angiogenic processes in vascular endothelial growth factor (VEGF) and its family of ligands and receptors. Several anti-angiogenic drugs have been developed and many more are currently in different phases of clinical trials, which target various angiogenesis-inducing agents, including VEGF, VEGF receptors, angiopoietins and ECM components such as integrins. Anti-angiogenic therapy can be divided into gene-based therapy and protein-based therapy. Gene-based therapies include use of antisense oligonucleotides, siRNA, aptamers, catalytic oligonucleotides including ribozymes and DNAzymes and transcription decoys. Protein-based therapeutics includes monoclonal antibodies, peptidomimetics, fusion proteins and decoy receptors. The later class of therapeutics has several advantages over gene-based and small molecule drugs, including specificity and complexity in functions, better tolerability, less interference with normal biological processes and lesser adverse effects due to decreased immune response by virtue of being mostly body's natural proteins. This review provides a comprehensive overview of angiogenesis and on the current protein-based anti-angiogenic therapeutics under research and in the clinic.