6 resultados para annealing time

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interfacial chemistry and adhesion between titanium dioxide (TiO2) nanotube layers and titanium (Ti) substrates were studied in this Article. TiO2 nanotube layers were produced on pure Ti by anodization and annealed in air for different time durations. The adhesion of the TiO2 nanotube layers was then investigated by Rockwell C indentation test. Results show that adhesion of TiO2 nanotube layers improved with the extension of annealing time. This improvement in adhesion of TiO2 nanotube layers was analyzed from the viewpoint of interfacial chemistry using energy dispersive X-ray spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS). It suggests that more Ti-O bonds formed in the interface after annealing, and this led to the improved adhesion of the TiO2 nanoube layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a simulation optimization of a real scheduling problem in industry, simulated annealing is introduced for this purpose.  Investigation is performed into the practicality of using simulated annealing to produce high quality schedules.  Results on the solution quality and computational effort show the inherent properties of the simulated annealing.  It is shown that when using this method, high quality schedules can be produced within reasonable time contraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A boron nitride (BN) nanostructure, conical BN nanorod, has been synthesized in a large quantity on Si substrates for the first time via the ball-milling and annealing method. Nitridation of milled boron carbide (B4C) powders was performed in nitrogen gas at 1300°C on the surface of the substrates to form the BN nanorods. The highly crystallized nanorods consist of conical BN basal layers stacked along the nanorod axis. Ball milling of the B4C powders can significantly enhance the nitridation of the powders and thus facilitate the formation of nanorods during the annealing process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two distinct substructures were produced in a Ni-30Fe austenitic model alloy by different thermomechanical processing routes. The first substructure largely displayed organized, banded subgrain arrangements with alternating misorientations, resulting from the deformation at a strain just before the initiation of dynamic recrystallization (DRX). By contrast, the second substructure was more random in character and exhibited complex subgrain/cell arrangements characterized by local accumulation of misorientations, formed through DRX. During the post-deformation annealing, the latter substructure revealed a rapid disintegration of dislocation boundaries leading to the formation of dislocation-free grains within a short holding time, though the former largely preserved its characteristics till becoming replaced by growing statically recrystallized grains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a high-manganese Fe-23Mn-1.5Al-0.3C Twinning-Induced Plasticity (TWIP) steel was subjected to plastic shear deformation using Equal-Channel Angular Pressing (ECAP) at 300 °C following route BC and additional annealing. The microstructure evolution during both deformation by ECAP and subsequent annealing was investigated and correlated with the mechanical properties. The successive grain refinement during ECAP was promoted by two parallel mechanisms, namely dislocation driven grain fragmentation and twin fragmentation, and accounted for the ultra-high strength. In addition, due to the relatively low volume fraction of deformation twins after ECAP at 300 °C, further contribution of deformation twinning during room temperature deformation allowed additional work-hardening capacity and elongation. During subsequent recovery annealing the ultra-fine grains and deformation twins were thermally stable, which supported retainment of the high yield strength along with regained uniform elongation. For the first time, the texture evolution during ECAP and during the following heat treatment was analyzed. After 1, 2, and 4 ECAP passes a transition texture with the characteristic texture components of both high- and low-SFE materials developed. During the following heat treatment the texture evolution proceeded similar to that observed in the same material after cold rolling. Retaining of the ECAP texture components due to oriented nucleation at grain boundaries and triple junctions as well as annealing twinning accounted for the formation of a weak, retained ECAP texture after recrystallization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a simulated annealing (SA)-based global maximum power point tracking (GMPPT) technique designed for photovoltaic (PV) systems which experience partial shading conditions (PSC). The proposed technique is compared with the common perturb and observe MPPT technique and the particle swarm optimization method for GMPPT. The performance is assessed by considering the time taken to converge and the number of sample cases where the technique converges to the GMPP. Simulation results indicate the improved performance of the SA-based GMPPT algorithm, with arbitrarily selected parameters, in tracking to the global maxima in a multiple module PV system which experiences PSC. Experimental validation of the technique is presented based on PV modules that experience nonuniform environmental conditions. Additionally, studies regarding the influence of the key parameters of the SA-based algorithm are described. Simulation and experimental results verify the effectiveness of the proposed GMPPT method.