12 resultados para alkaline xylanase

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation into humic acid; chemistry examined the effect the extraction technique used to isolate humic material from the sediment had on the chemical/structural composition and yield of the acid; compared the various isolation techniques used in the literature and developed an extraction technique which minimises the solubilisation of the heavy metals from the inorganic sediment and, examined the complexation capacity of humic acids derived from a sediment source in relation to the heavy metal content and extraction technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After a meal, dogfish exhibit a metabolic alkalosis in the bloodstream and a marked excretion of basic equivalents across the gills to the external seawater. We used the H+, K+-ATPase pump inhibitor omeprazole to determine whether these post-prandial alkaline tide events were linked to secretion of H+ (accompanied by Cl) in the stomach. Sharks were fitted with indwelling stomach tubes for pretreatment with omeprazole (five doses of 5mg omeprazole per kilogram over 48 h) or comparable volumes of vehicle (saline containing 2% DMSO) and for sampling of gastric chyme. Fish were then fed an involuntary meal by means of the stomach tube consisting of minced flatfish muscle (2% of body mass) suspended in saline (4% of body mass total volume). Omeprazole pretreatment delayed the post-prandial acidification of the gastric chyme, slowed the rise in Cl concentration of the chyme and altered the patterns of other ions, indicating inhibition of H+ and accompanying Clsecretion. Omeprazole also greatly attenuated the rise in arterial pH and bicarbonate concentrations and reduced the net excretion of basic equivalents to the water by 56% over 48h. Arterial blood CO2 pressure and plasma ions were not substantially altered. These results indicate that elevated gastric H+ secretion (as HCl) in the digestive process is the major cause of the systemic metabolic alkalosis and the accompanying rise in base excretion across the gills that constitute the alkaline tide in the dogfish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the industries involving alkaline solutions in different process streams, the nature and stability of oxide films formed on the metallic surfaces determine the rates of erosion–corrosion of the equipment. In the present study the characteristics of the oxide films formed on AISI 1020 steel in a 2.75 M sodium hydroxide solution at temperatures up to 175°C, have been investigated by employing electrochemical techniques of cyclic voltammetry and chronoamperometry. The experiments were carried out in an autoclave system based upon a ‘rotating cylinder electrode’ geometry to determine the effects of turbulence on the stability of the films. The results suggest that little protection is afforded in the active region (at about −0.8 VSHE). In the passive region at low potentials (−0.6 V to −0.4 VSHE), it appears the films are compact and more stable, and therefore provide good protection. At higher potentials (>−0.4 VSHE) in the passive region, the results suggest that film formation and dissolution occur simultaneously and the increase in temperature and turbulence causes a breakdown of the passive film resulting in a situation similar to nonprotective magnetite growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, novel alkaline solid polymer electrolytes (SPEs) with tetramethyl ammonium hydroxide (Me4NOH·xH2O) have been developed, without addition of any volatile solvent. It was found that some polymers such as poly(sodium acrylate) had good compatibility with Me4NOH·xH2O. The polymer-Me4NOH·xH2O electrolytes thus prepared in this work appeared to have improved mechanical properties as compared with the pure hydroxide and remained highly conductive in the solid state (102 S cm−1 at ~40 °C). The thermal properties of the alkaline SPEs and the dependence of conductivity on composition and temperature are presented, and the relationships between properties and composition as well as conductivity mechanism for these new systems are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, LaMO3 and LaNi0.5M0.5O3 (M = Ni, Co, Fe, Mn and Cr) perovskite oxide electrocatalysts were synthesized by a combined ethylenediaminetetraacetic acid-citrate complexation technique and subsequent calcinations at 1000 °C in air. Their powder X-ray diffraction patterns demonstrate the formation of a specific crystalline structure for each composition. The catalytic property of these materials toward the oxygen reduction reaction (ORR) was studied in alkaline potassium hydroxide solution using the rotating disk and rotating ring-disk electrode techniques. Carbon is considered to be a crucial additive component because its addition into perovskite oxide leads to optimized ORR current density. For LaMO3 (M = Ni, Co, Fe, Mn and Cr)), in terms of the ORR current densities, the performance is enhanced in the order of LaCrO3, LaFeO3, LaNiO3, LaMnO3, and LaCoO3. For LaNi0.5M0.5O3, the ORR current performance is enhanced in the order of LaNi0.5Fe0.5O3, LaNi0.5Co0.5O3, LaNi0.5Cr0.5O3, and LaNi0.5Mn0.5O3. Overall, LaCoO3 demonstrates the best performance. Most notably, substituting half of the nickel with cobalt, iron, manganese, or chromium translates the ORR to a more positive onset potential, suggesting the beneficial catalytic effect of two transition metal cations with Mn as the most promising candidate. Koutecky–Levich analysis on the ORR current densities of all compositions indicates that the four-electron pathway is favored on these oxides, which are consistent with hydroperoxide ion formation of <2%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion of steel grinding balls is a major recurrent cost for mill operators concerned with the production gold. Subsequently, the use of corrosion inhibitors in production fluids, which is typically at pH >9, is an attractive and economical option. This study reports on the corrosion wear of steel grinding balls under alkaline/oxygen conditions and in presence of cyanide. A fundamental study on the influence of several inorganic-based inhibitors (i.e., nitrite, chromate, silicate, hexametaphosphate) on the corrosion rate of carbon steel was undertaken. Subsequently, the corrosion performances of various inhibitors were evaluated in stirred vessels. Corrosion rates were determined via mass loss and electrochemical methods (i.e., linear polarisation, Tafel). It was observed that inhibitors based upon chromate provide superior protection under the conditions investigated in this study. In lime treated, high chloride waters, chromate gave over 80% protection at levels of 10 100 ppm with no evidence of pitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchrotron infrared (IR) and micro-Raman spectra of natrolites containing alkaline-earth ions (Ca2+, Sr2+, and Ba2+) and heavy metals (Cd2+, Pb2+, and Ag+) as extra-framework cations (EFCs) were measured under ambient conditions. Complementing our previous spectroscopic investigations of natrolites with monovalent alkali metal (Li+, Na+, K+, Rb +, and Cs+) EFCs, we establish a correlation between the redshifts of the frequencies of the 4-ring and helical 8-ring units and the size of the EFCs in natrolite. Through ab initio calculations we have derived structural models of Ca2+- and Ag+-exchanged natrolites with hydrogen atoms, and found that the frequency shifts in the H - O - H bending mode and the differences in the O - H stretching vibration modes can be correlated with the orientations of the water molecules along the natrolite channel. Assuming that the members of a solid solution series behave as an ideal mixture, we will be able to use spectroscopy to probe compositions. Deviation from ideal behavior might indicate the occurrence of phase separation on various length scales. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion inhibition of l-cysteine on AA5052 aluminium alloy in 4 mol/L NaOH solution was investigated by hydrogen gas evolution experiment, polarisation curve, galvanostatic discharge, electrochemical impedance spectroscopy measurements and quantum chemical calculations. The adsorption of l-cysteine on aluminium alloy surface obeyed the amended Langmuir's adsorption isotherm. The polarisation curves indicated that l-cysteine acted as a cathodic inhibitor to inhibit cathodic reaction. The inhibition mechanism was dominated by the geometric covering effect. The galvanostatic discharge shows that the additives restrain the hydrogen evolution and increase the anodic utilization rate. Quantum chemical calculations indicated that l-cysteine molecules mainly interacted with on the carboxyl groups on the aluminium alloy surface. A strong hybridization occurred between the s-orbital and p-orbital of reactive sites in the l-cysteine molecule and the sp-orbital of Aluminium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, for the first time, a cobalt carbonate hydroxide (Co(CO3 )0.5 (OH)⋅0.11 H2 O) nanowire array on Ti mesh (CHNA/Ti) was applied to drive the dehydrogenation of alkaline NaBH4 solution for on-demand hydrogen production. Compared with other nanostructured Co-based catalyst systems, CHNA/Ti can be activated more quickly and separated easily from fuel solutions. This self-supported cobalt salt nanowire array catalyst works as an efficient and robust 3D catalyst for the hydrolysis reaction of NaBH4 with a hydrogen generation rate of 4000 mL min(-1)  gCo (-1) and a low apparent activation energy of 39.78 kJ mol(-1) and offers an attractive system for on-demand hydrogen generation.