9 resultados para air thickness, axial length, Lenstar, partial coherence interferometry, refractive index

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate tomographic imaging of the refractive index of turbid media using bifocal optical coherence refractometry (BOCR). The technique, which is a variant of optical coherence tomography, is based on the measurement of the optical pathlength difference between two foci simultaneously present in a medium of interest. We describe a new method to axially shift the bifocal optical pathlength that avoids the need to physically relocate the objective lens or the sample during an axial scan, and present an experimental realization based on an adaptive liquid-crystal lens. We present experimental results, including video clips, which demonstrate refractive index tomography of a range of turbid liquid phantoms, as well as of human skin <i>in vivo</i>.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To describe the time-course and amplitude of changes to sub-foveal choroidal thickness (SFCT) induced by imposed hyperopic and myopic retinal defocus and to compare the responses in emmetropic and myopic subjects. METHODS: Twelve East Asian subjects (age: 18-34 years; six were emmetropic and six had myopia between -2.00 and -5.00 dioptres (D)) viewed a distant target (video movie at 6 m) for 60 min on two separate occasions while optical coherence tomography (OCT) images of the choroid were taken in both eyes every 5 min to monitor SFCT. On each occasion, one eye was optimally corrected for distance with a contact lens while the other eye wore a contact lens imposing either 2.00 D hyperopic or 2.00 D myopic retinal defocus. RESULTS: Baseline SFCT in myopic eyes (mean &plusmn; S.D.): 256 &plusmn; 42 &mu;m was significantly less than in emmetropic eyes (423 &plusmn; 62 &mu;m; p &lt; 0.01) and was correlated with magnitude of myopia (-39 &mu;m per dioptre of myopia, R(2) = 0.67: p &lt; 0.01). Repeated measures anova (General Linear Model) analysis revealed that in both subject groups, 2.00 D of myopic defocus caused a rapid increase in SFCT in the defocussed eye (significant by 10 min, increasing to approximately 20 &mu;m within 60 min: p &lt; 0.01), with little change in the control eye. In contrast, 2.00 D of hyperopic defocus caused a decrease in SFCT in the experimental eye (significant by 20-35 min. SFCT decreased by approximately 20 &mu;m within 60 min: p &lt; 0.01) with little change in the control eye. CONCLUSIONS: Small but significant changes in SFCT (5-8%) were caused by retinal defocus. SFCT increased within 10 min of exposure to 2.00 D of monocular myopic defocus, but decreased more slowly in response to 2.00 D of monocular hyperopic defocus. In our relatively small sample we could detect no difference in the magnitude of changes to SFCT caused by defocus in myopic eyes compared to emmetropic eyes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A partial differential equation is developed that captures the evolution of key characteristics of tensile twinning in magnesium base alloys. The objective is to provide a framework for ascertaining the effects of hardening &ndash; due to grain refinement, precipitation and dislocation substructure &ndash; on twin volume fraction, thickness and length. The model is developed with the help of observations made on alloy AZ31. It is shown that it is necessary to consider the nucleation of twins at locations where neighbouring twins impinge on the grain boundary. The model provides a reasonable approximation for the role of grain size on twinning. It predicts a period of low apparent work hardening following yielding and shows that this should be more extensive for finer grain sizes, in agreement with experiment. Finally, some predictions are made on the effect of changing the resistance to twinning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cortical bone is not a uniform tissue, and its apparent density [cortical volumetric density (vBMD)] varies around the bone cross-section as well as along the axial length of the bone. It is not yet known, whether the varying vBMD distribution is attributable to modulation in the predominant loads affecting bone. The aim of the present study was to compare the cortical bone mass distribution through the bone cortex (radial distribution) and around the center of mass (polar distribution) among 221 premenopausal women aged 17&ndash;40 years representing athletes involved in high impact, odd impact, high magnitude, repetitive low impact, repetitive non-impact sports and leisure time physical activity (referent controls). Bone cross-sections at the tibial mid-diaphysis were assessed with pQCT. Radial and polar vBMD distributions were analyzed in three concentric cortical divisions within the cortical envelope and in four cortical sectors originating from the center of the bone cross-section. MANCOVA, including age as a covariate, revealed no significant group by division/sector interaction in either radial or polar distribution, but the mean vBMD values differed between groups (P &lt; 0.001). The high and odd-impact groups had 1.2 to 2.6% (P &lt; 0.05) lower cortical vBMD than referents, in all analyzed sectors/divisions. The repetitive, low-impact group had 0.4 to 1.0% lower (P &lt; 0.05) vBMD at the mid and outer cortical regions and at the anterior sector of the tibia. The high magnitude group had 1.2% lower BMD at the lateral sector (P &lt; 0.05). The present results generate a hypothesis that the radial and polar cortical bone vBMD distributions within the tibial mid-shaft are not modulated by exercise loading but the mean vBMD level is slightly affected.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excessive axial elongation of the eye is the principal structural cause of myopia. The increase in eye size results from active remodelling of the sclera, producing a weakened scleral matrix. The present study will detail the biomechanics of the sclera and highlight the matrix and cellular factors important in the control of eye size. Scleral elasticity (load vs. tissue extension) and creep rate (tissue extension vs. time) have been measured postmortem in human eyes. Animal models of myopia have allowed the direct relevance of scleral biomechanics to be investigated during myopia development. Recently, data on tissue matrices incorporating scleral fibroblasts have highlighted the role of cellular contraction in scleral biomechanics. Scleral elasticity is increased in eyes developing myopia, with a reduction in the failure load of the tissue. Scleral creep rate is increased in the sclera from eyes developing myopia, and reduced in eyes recovering from myopia. These changes in biomechanical properties of the sclera occur early in the development of myopia (within 24 h). Alterations in scleral biomechanics during myopia development have been attributed to changes in matrix constituents, principally reduced collagen content. Although the biochemical structure of the sclera plays a critical role in defining the mechanical properties, recent studies investigating the cellular mechanics of the sclera, implicate myofibroblasts in scleral biomechanics. Scleral myofibroblasts have the capacity to contract the matrix and are regulated by tissue stress and growth factors such as transforming growth factor-&szlig;. Changes in these regulatory factors have been observed during myopia development, implicating cellular factors in the resultant weakened sclera. Changes in the biomechanical properties of the sclera are important in facilitating the increase in axial length that results in myopia. Understanding the matrix and cellular factors contributing to the weakened sclera may aid in the development of a clinically appropriate treatment for myopia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rational use of energy and its associated greenhouse gas emissions has become a key issue for a sustainable environment and economy. A substantial amount of energy is consumed by today's buildings which are accountable for about 40% of the global energy consumption. There are on-going researches in order to overcome these and find new techniques through energy efficient measures. Passive air cooling of earth pipe cooling technique is one of those which can save energy in buildings with no greenhouse gas emissions. The performance of the earth pipe cooling system is mainly affected by the parameters, namely air velocity, pipe length, pipe diameter, pipe material, and pipe depth. This paper investigates the impact of these parameters on thermal performance of the horizontal earth pipe cooling system in a hot humid subtropical climate at Rockhampton, Australia. For the parametric investigation, a thermal model was developed for the horizontal earth pipe cooling system using the simulation program, FLUENT 15.0. Results showed a significant effect for air velocity, pipe length, and pipe diameter on the earth pipe cooling performance, where the pipe length dominated the other parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of the force as a function of distance between two solids separated by a liquid crystal film give information on the structure of the film. We report such measurements for two molecularly smooth surfaces of mica separated by the nematic liquid crystal 4'-n-pentyl 4-cyanobiphenyl (5CB) in both the planar and homeotropic orientations at room temperature. The force is determined by measuring the deflection of a spring supporting one of the mica pieces, while an optical technique is used to measure the film thickness to an accuracy of &plusmn; (0.1-0.2) nm. The technique also allows the refractive indices of the nematic to be measured, and hence a determination of the average density and order parameter of the liquid crystal film as a function of its thickness. Three distinct forces were measured, each reflecting a type of ordering of the liquid crystal near the mica surfaces. The first one results from elastic d&eacute;formation in the liquid crystal ; it was only observed in a twisted planar sample where the 5CB molecules are oriented in different directions at the two mica surfaces. The second, measured in both the planar and homeotropic orientations, is attributed to an enhanced order parameter near the surfaces. Both of these are monotonic repulsive forces measurable below 80 nm. Finally, there is a short-range force which oscillates as a function of thickness, up to about six molecular layers, between attraction and repulsion. This results from ordering of the molecules in layers adjacent to the smooth solid surface. It is observed in both the planar and homeotropic orientations, and also in isotropic liquids.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a simple analytic solution for the condition of constructive interference for light transmitted through an interferometer incorporating three ideally transparent layers of arbitrary thickness and refractive index. We also consider the effect of adding two metallic coatings to the outer surfaces of the interferometer and give empirical expressions for the associated phase changes for silver coatings on silica, sapphire, and mica substrates. A particular application to fringes of equal chromatic order can be utilized to obtain precise measurements of the thickness of extremely thin films sandwiched between two substrates.<br />

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, S-parameters investigation of a variable incidence angle multilayer SPR biosensor is presented. Both magnitude and phase of the S-parameters are taken into account in the investigation. The work presented in this paper is the first attempt to apply S-parameters analysis to a multilayer SPR biosensor. The goal is to improve sensitivity through involving S-parameters including their phase values. In addition, further investigation is carried out to understand the relationship between the S-parameters and thickness of biomolecular layer and also the design parameters including the number of graphene layers.