44 resultados para adsorbed

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical shift in the 129Xe NMR spectrum of adsorbed xenon is very sensitive to the presence of oxygen-containing functional groups on the surface of mesoporous carbon materials. Well-characterized, structurally similar nanodiamond and onion-like carbon samples are considered here as model objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the extensive use of 129Xe NMR for characterization of high surface-to-volume porous solids, particularly zeolites, this method has not been widely used to explore the properties of microporous carbon materials. In this study, commercial amorphous carbons of different origin (produced from different precursors) and a series of activated carbons obtained by successive cyclic air oxidation/pyrolysis treatments of a single precursor were examined. Models of 129Xe chemical shift as a function of local Xe density, mean pore size, and temperature are discussed. The virial coefficient arising from binary xenon collisions, σXe-Xe, varied linearly with the mean pore size given by N2 adsorption analysis; σ Xe-Xe appeared to be a better probe of the mean pore size than the chemical shift extrapolated to zero pressure, σS. © 2008 MAIK Nauka.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most common means of gold nanoparticle (AuNP) biofunctionalization involves the manipulation of precursor citrate-capped AuNPs via ligand displacement. However, the molecular-level structural characteristics of the citrate overlayer adsorbed at the aqueous Au interface at neutral pH remain largely unknown. Access to atomistic-scale details of these interfaces will contribute much needed insight into how AuNPs can be manipulated and exploited in aqueous solution. Here, the structures of such citrate overlayers adsorbed at the aqueous Au(111) interface at pH 7 are predicted and characterized using atomistic molecular dynamics simulations, for a range of citrate surface densities. We find that the overlayers are disordered in the surface density range considered, and that many of their key characteristics are invariant with surface density. In particular, we predict the overlayers to have 3-D, rather than 2-D, morphologies, with the anions closest to the gold surface being oriented with their carboxylate groups pointing away from the surface. We predict both striped and island morphologies for our overlayers, depending on the citrate surface density, and in all cases we find bare patches of the gold surface are present. Our simulations suggest that both citrate-gold adsorption and citrate-counterion pairing contribute to the stability of these citrate overlayer morphologies. We also calculate the free energy of adsorption at the aqueous Au(111) interface of a single citrate molecule, and compare this with the corresponding value for a single arginine molecule. These findings enable us to predict the conditions under which ligand displacement of surface-adsorbed citrate by arginine may take place. Our findings represent the first steps toward elucidating a more elaborate, detailed atomistic-scale model relating to the biofunctionalization of citrate-capped AuNPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three types of titania supported materials including titanium dioxide and silicon dioxide composite, titania-coated activated carbon and titania-coated glass beads were prepared and used as photocatalysts to remove toluene from an air stream. Their surface areas were analysed. TEM image reveals titania-silica composites were nanostructured aggregates. XRD was used to determine their crystalline phase which was 100% anatase for the titania component. A fixed bed reactor was designed and built in the laboratory, the toluene with initial concentration of 300 ppm (1149 mg/m3) was fed into the reactor, the destruction efficiencies of toluene were determined by the gas analyser. It was also found that TiO2-SiO2 aggregates with high surface area (421.1 m2/g) achieved high destruction efficiencies. The combined effects of adsorption and photocatalysis were further studied by comparing the performance of pure activated carbon (surface area of 932.4 m2/g) and TiO2 coated activated carbon with BET surface area of 848.4 m2/g. It was found that the TiO2 coated activated carbon demonstrated comparable results to pure activated carbon, and most importantly, the TiO2-coated activated carbon can be effectively regenerated by UV irradiation, and was reused as adsorbent. The experimental result of titania-coated glass beads demonstrated a steady degradation efficiency of 15% after a period of 17 hours. It helped to understand that photocatalysis degradation ability of the TiO2 was constant regardless of the adsorption capacity of the catalysts. This photocatalytic property can be used to degrade the adsorbed toluene and regenerate the catalyst. This study revealed that if the experiments were designed to use adsorption to remove toluene and followed by regeneration of adsorbent using photocatalysis, it could achieve a very high removal efficiency of toluene and reduce the regeneration cost of saturated adsorbent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pulse of chromated copper arsenate (CCA, a timber preservative) was applied in irrigation water to an undisturbed field soil in a laboratory column. Concentrations of various elements in the leachate from the column were measured during the experiment. Also, the remnants within the soil were measured at the end of the experiment. The geochemical modelling package, PHREEQC-2, was used to simulate the experimental data. Processes included in the CCA transport modelling were advection, dispersion, non-specific adsorption (cation exchange) and specific adsorption by clay minerals and organic matter, as well as other possible chemical reactions such as precipitation/dissolution. The modelling effort highlighted the possible complexities in CCA transport and reaction experiments. For example, the uneven dosing of CCA as well as incomplete knowledge of the soil properties resulted in simulations that gave only partial, although reasonable, agreement with the experimental data. Both the experimental data and simulations show that As and Cu are strongly adsorbed and therefore, will mostly remain at the top of the soil profile, with a small proportion appearing in leachate. On the other hand, Cr is more mobile and thus it is present in the soil column leachate. Further simulations show that both the quantity of CCA added to the soil and the pH of the irrigation water will influence CCA transport. Simulations suggest that application of larger doses of CCA to the soil will result in higher leachate concentrations, especially for Cu and As. Irrigation water with a lower pH will dramatically increase leaching of Cu. These results indicate that acidic rainfall or significant accidental spillage of CCA will increase the risk of groundwater pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volatile organic compounds (VOCs) exist widely in both the indoor and outdoor environment. The main contributing sources of VOCs are motor vehicle exhaust and solvent utilization. Some VOCs are toxic and carcinogenic to human health, such as benzene. In this study, TiO2–SiO2 based photocatalysts were synthesized using the sol–gel method, with high surface areas of 274.1–421.1 m2/g obtained. Two types of pellets were used as catalysts in a fixed-bed reactor installed with a UV black light lamp. Experiments were conducted to compare their efficiencies in degrading the VOCs. Toluene was used as the VOC indicator. When the toluene laden gas stream passed through the photocatalytic reactor, the removal efficiencies were determined using a FTIR multi-gas analyser, which was connected to the outlet of the reactor to analyse the toluene concentrations. As the TiO2–SiO2 pellets used have a high adsorption capacity, they had dual functions as a photocatalyst and adsorbent in the hybrid photocatalysis and adsorption system. The experiments demonstrated that the porous photocatalyst with very high adsorptive capacity enhanced the subsequent photocatalysis reactions and lead to a positive synergistic effect. The catalyst can be self-regenerated by photocatalytic oxidation of the adsorbed VOCs. When the UV irradiation and feeding gas is continuous, a destruction efficiency of about 25% was achieved over a period of 20 h. Once the system was designed and operated into adsorption/regeneration mode, a higher removal efficiency of about 55% was maintained. It was found that the catalyst pellets with a higher surface area (421 m2/g) achieved higher conversion efficiency (100%) for a longer period than those with a lower surface area. A full spectrum scan was carried out using a Bio-rad Infrared spectrometer, finding that the main components of the treated gas stream leaving the reactor, along with untreated toluene, were CO2 and water. The suspected intermediates of aliphatic hydrocarbons and CO were found in minimal amounts or were non detectable. The kinetic rate constants were calculated from the experimental results, it appeared that the stronger adsorption capacity, i.e. larger specific surface area, the higher conversion efficiency would be achieved.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A woven pure wool fabric has been exposed to atmospheric pressure plasma for 30 seconds using a pilot-scale. commercial machine. X-ray photoelectron spectral data revealed large increases in oxygen and nitrogen. and a large reduction in carbon. on the surfaces of the plasma-treated fibres. A CIN ratio of 3.55 for plasma-treated wool was consistent with removal of the covalently-bound fatty acids from the surface of the cuticle cells. resulting in exposure of the proteinaceous epicuticle. Dye staining experiments revealed that the back of the fabric had received the same, uniform level of treatment as the face, despite the fact that only the face had been directly exposed to the plasma. Dyes (1 % oww) were applied to fabric at 50°C (liquor ratio =40: 1) and pH values from 3 to 6. The relatively low temperature of 50°C was selected in order to accentuate the effects of plasma on the rate of dye uptake. Under these conditions, dye was adsOibed onto the fibre surfaces, with very little penetration into the fibres. Effects of the plasma treatment on the rate of dyes adsorption were dyespecific. No significant effects of plasma on the rate of dye uptake were observed with relatively hydrophobic dyes, but hydrophilic dyes were adsorbed more rapidly by the plasmatreated fabric. It would appear that for more hydrophobic dyes, hydrophobic effects are more important for the adsorption of dyes by the plasma-treated fibres, even though these fibres were quite hydrophilic. On the other hand. it is concluded that for more hydrophilic dyes, electrostatic effects are more important for adsorption by the plasma-treated fibre.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modification of glassy carbon electrodes with random dispersions of nanotubes is currently the most popular approach to the preparation of carbon nanotube modified electrodes. The performance of glassy carbon electrodes modified with a random dispersion of bamboo type carbon nanotubes was compared with single walled carbon nanotubes modified glassy carbon electrodes and bare glassy carbon electrodes. The electrochemical performance of all three types for electrode were compared by investigating the electrochemistry with solution species and the oxidation of guanine and adenine bases of surface adsorbed DNA. The presence of edge planes of graphene at regular intervals along the walls of the bamboo nanotubes resulted in superior electrochemical performance relative to SWNT modified electrodes from two aspects. Firstly, with solution species the peak separation of the oxidation and reduction waves were smaller indicating more rapid rates of electron transfer. Secondly, a greater number of electroactive sites along the walls of the bamboo-carbon nanotubes (BCNTs) resulted in larger current signals and a broader dynamic range for the oxidation of DNA bases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study assessed the sustainability of utilising groundwater systems to
manage an aluminium smelter's fluoridated trade wastewater stream. Replacing ocean discharge of the wastewater with land irrigation is one option. Using a groundwater model (developed using MODFLOW incorporating parameter estimation software (PEST-ASP)), we found that most of the groundwater flow takes place through surface sands. Fluoride is adsorbed in these sands during the drier summer months, but desorption is rapid when winter rain flushes the aquifer. Underlying clays and other layers prevent significant contamination of the deeper aquifer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric-pressure plasma treatment of wool fabric produced a significantly higher level of adsorbed fiber-reactive dye when applied at 50 °C (pH 3.0–6.0) in the absence of any organic leveling agent. In addition, color yields indicated that dye was more uniformly adsorbed by the plasma-treated fabric compared with the untreated material. When untreated fabric was dyed in the presence of a leveling agent (Albegal B), the extent and levelness of dye sorption were enhanced. These enhancements were, however, relatively small on the plasma-treated wool compared with those on untreated wool. A ‘surface’ mechanism, similar to that proposed when plasma-treated wool is dyed in the absence of leveling agent, can explain the leveling ability of Albegal B under adsorption conditions. Increasing the dyebath temperature to 90 °C resulted in dye penetration of the fibers. Under these conditions, any enhancements of dye uptake produced by the plasma treatment, as well as the use of Albegal B, were relatively small, in contrast to the behavior at 50 °C. Improvements in the uniformity of dye sorption observed at 50 °C were, however, maintained at the higher temperature. It is concluded that the inability of reactive dyes to migrate (and so promote leveling and uniformity) once they have reacted with the fiber, means that differences in the uniformity of dye sorbed at 50 °C are still apparent at equilibrium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wool fabric has been subjected to an atmospheric-pressure treatment with a helium plasma for 30 seconds. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed removal of the covalently-bound fatty acid layer (F-layer) from the surface of the wool fibers, resulting in exposure of the underlying, hydrophilic protein material. Dye uptake experiments were carried out at 50 ºC to evaluate the effects of plasma on the rate of dye uptake by the fiber surface, as well as give an indication of the adsorption characteristics in the early stages of a typical dyeing cycle. The dyes used were typical, sulfonated wool dyes with a range of hydrophobic characteristics, as determined by their partitioning behavior between water and n-butanol. No significant effects of plasma on the rate of dye adsorption were observed with relatively hydrophobic dyes. In contrast, the relatively hydrophilic dyes were adsorbed more rapidly (and uniformly) by the plasma-treated fabric. It was concluded that adsorption of hydrophobic dyes on plasma-treated wool was influenced by hydrophobic interactions, whereas electrostatic effects predominated for dyes of more hydrophilic character. On heating the dyebath to 90 ºC in order to achieve fiber penetration, no significant effect of the plasma treatment on the extent of uptake or levelness of a relatively hydrophilic dye was observed as equilibrium conditions were approached.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acicular α-FeOOH particles are formed through aging of ferric oxyhydroxide colloidal solution formed by the neutralization of FeCl3 aqueous solution by NaOH. The effect of foreign ion addition to the colloidal solution on the formation and morphology of α-FeOOH particles has been investigated. The magnetic properties of Fe3O4 particles made from the obtained particles have also been investigated. The rate constant of the formation of α-FeOOH remarkably decreased, but the crystallite size of α-FeOOH particles increased with increasing the quantity of phosphate ion added even with small amounts. These results have been explained as follows: the phosphate ions are selectively adsorbed on the (a) plane of α-FeOOH, cover the (a) plane, and block the crystal growth of the (a) plane of the α-FeOOH. The quantities of the phosphate ion adsorbed on the b and c planes are relatively small. The complex ion of Fe(OH)4- is preferentially deposited on both (b) and (c) planes, and the crystal growth of (b) and (c) planes is greatly accelerated. The relationship between the morphology of the formed α-FeOOH particles and the quantity of phosphate ion added has been investigated. The asterisk type particles: α-FeOOH particles heterogeneously junctioned to α-Fe2O3 particles, were formed when a small amount of phosphate was added to the mother liquid. The α-FeOOH crystal epitaxially grew on the junction interface with the α-Fe2O3 crystal. In the case of the aging at the temperature as high as 80°C, the cross type junctioned particles were stably formed at pH below 12.0. The Fe3O4 particles with screw-like unique three-dimensional morphology were produced from the heterogeneously junctioned particles.