39 resultados para adipocytes

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vanadate has insulin-like effects in adipocytes without stimulating insulin receptor kinase activity. However, it activates IRS-1 associated PI 3-kinase, suggesting that it mimics insulin effects by stimulating signaling elements downstream of PI 3-kinase. Here we analysed the stimulation of MAPK by insulin and vanadate and observed that both elicit a rapid 3.5–4 fold activation which is abolished by wortmannin and PD98059. Simultaneous addition of insulin and vanadate does not result in an additive effect neither on MAPK nor in MEK. Whereas insulin action is transient, vanadate stimulation lasts up to 20 min. In insulin-resistant adipocytes from old rats, insulin stimulates poorly MAPK, whereas a normal activation is achieved with vanadate. We conclude that: (a) insulin and vanadate use a common signaling pathway from PI 3-kinase to MEK and MAPK; (b) vanadate but not insulin, elicits a sustained activation of both enzymes; (c) this pathway is functional in old rat adipocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 µM nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 µM nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 µM) significantly inhibited basal and insulin-stimulated glucose uptake in adipocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 µM nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 µM nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 °C. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caveolae are small invaginations of the cell surface that are abundant in mature adipocytes. A recent study (Kanzaki, M., and Pessin, J. E. (2002) J. Biol. Chem. 277, 25867-25869) described novel caveolin- and actin-containing structures associated with the adipocyte cell surface that contain specific signaling proteins. We have characterized these structures, here termed "caves," using light and electron microscopy and observe that they represent surface-connected wide invaginations of the basal plasma membrane that are sometimes many micrometers in diameter. Rather than simply a caveolar domain, these structures contain all elements of the plasma membrane including clathrin-coated pits, lipid raft markers, and non-raft markers. GLUT4 is recruited to caves in response to insulin stimulation. Caves can occupy a significant proportion of the plasma membrane area and are surrounded by cortical actin. Caveolae density in caves is similar to that on the bulk plasma membrane, but because these structures protrude much deeper into the plane of focus of the light microscope molecules such as caveolin and other plasma membrane proteins appear more concentrated in caves. We conclude that the adipocyte surface membrane contains numerous wide invaginations that do not represent novel caveolar structures but rather large surface caves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 2 diabetes (T2D) is one of the fastest growing threats to human health in westernised and developing countries and is associated with central obesity, atherosclerosis, dyslipidaemia, hyperinsulinaemia and  hypertension. Insulin resistance, defined as a diminished response to ordinary levels of circulating insulin in one or more peripheral tissues, is an integral feature of T2D pathophysiology. This includes an impairment of insulin to inhibit hepatic glucose output and to stimulate glucose disposal into muscle and fat. While insulin is responsible for a number of specific biological responses, stimulation of glucose transport is critical for the maintenance of glucose homeostasis. The primary mechanism for insulin stimulation of glucose uptake into muscle and fat is the translocation of glucose transporter 4 (GLUT4) to the cell surface from intracellular storage vesicles within the cell. A major advantage in focussing on insulin regulation of glucose transport is that this represents the endpoint of multiple upstream signalling pathways. This chapter describes the measurement of GLUT4 translocation in cultured cells and its potential application for both  mechanistic and therapeutic studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background : Lipid droplet (LD) formation and size regulation reflects both lipid influx and efflux, and is central in the regulation of adipocyte metabolism, including adipokine secretion. The length and degree of dietary fatty acid (FA) unsaturation is implicated in LD formation and regulation in adipocytes. The aims of this study were to establish the impact of eicosapentaenoic acid (EPA; C20:5n-3) in comparison to SFA (STA; stearic acid, C18:0) and MUFA (OLA; oleic acid, C18:1n-9) on 3T3-L1 adipocyte LD formation, regulation of genes central to LD function and adipokine responsiveness. Cells were supplemented with 100 μM FA during 7-day differentiation.

Results : EPA markedly reduced LD size and total lipid accumulation, suppressing PPARγ, Cidea and D9D/SCD1 genes, distinct from other treatments. These changes were independent of alterations of lipolytic genes, as both EPA and STA similarly elevated LPL and HSL gene expressions. In response to acute lipopolysaccharide exposure, EPA-differentiated adipocytes had distinct improvement in inflammatory response shown by reduction in monocyte chemoattractant protein-1 and interleukin-6 and elevation in adiponectin and leptin gene expressions.

Conclusions : This study demonstrates that EPA differentially modulates adipogenesis and lipid accumulation to suppress LD formation and size. This may be due to suppressed gene expression of key proteins closely associated with LD function. Further analysis is required to determine if EPA exerts a similar influence on LD formation and regulation in-vivo.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Stromal cell-derived factor-1 (SDF-1) is expressed in pre-adipocytes but its role is unknown. We investigated butyrate (a histone deacetylase inhibitor - HDACi) and other short-chain fatty acids (SCFA) in the regulation of SDF-1. We further investigated whether effects of SCFA were signalled through G protein-coupled receptors FFA2 and FFA3. Design and Results: SDF-1 mRNA expression and protein secretion were studied in 3T3-L1 cells and human pre-adipocytes. SDF-1 was abundant, with mRNA and protein levels increased by butyrate. This was replicated with acetate and propionate, but not with trichostatin or valproate. Trichostatin inhibited SDF-1 secretion. Pertussis toxin blocked stimulation by butyrate. The order of potency of SCFA in stimulating SDF-1 (C3 > C4 > C2) is consistent with action through FFA3. Silencing the FFA3 gene abolished butyrate-stimulated SDF-1 expression and secretion. FFA3 was expressed in both pre-adipocytes and adipocytes, while FFA2 was expressed in adipocytes only. SDF-1 expression was low in murine macrophage J774.2 cells, while the SDF-1 receptor CXCR4 was absent from 3T3-L1 cells but abundant in J774.2 macrophages. In human pre-adipocytes, FFA3 was also expressed and SCFA increased SDF-1 secretion. Conclusions: SDF-1 and CXCR4 may mediate the interaction between adipose stromal cells and macrophages. Effects of SCFA are mediated through FFA3, but not histone deacetylase inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they responded acutely to catecholamines by increasing oxygen consumption in an UCP1-dependent manner, and by increasing the expression of genes enriched in brown but not beige adipocytes. Chronic exposure to catecholamines exacerbated this phenotype. However, a beige adipocyte differentiation procedure did not induce a beige adipocyte phenotype in 3T3-L1 fibroblasts. These multiple lineage features should be considered when interpreting data from experiments utilizing 3T3-L1 adipocytes.