9 resultados para acute toxicity

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fipronil, a phenyl pyrazole pesticide, is aerially applied in eastern Australia to control locust outbreaks, usually as “Adonis 3UL Insecticide®” (BASF), an ultra low (UL) volume formulation containing 0.3% active pesticide. We tested the toxicities of technical-grade fipronil, the Adonis 3UL formulation and its components in zebra finch, a native bird at risk of exposure in locust control regions. We estimated oral-dose LD50 by the Up-and-Down method. Under laboratory conditions, we identified unexpectedly high toxicities due exclusively to diacetone alcohol (DAA), a solvent making up 12.5% of the Adonis 3UL formulation. In contrast, finches were asymptomatic when exposed to 0.3% technical grade fipronil dissolved in a minimum amount of acetone. Depending upon the behaviour and persistence of DAA under field conditions, this formulation of Adonis 3UL may pose a far greater threat to the health of small birds and possibly other vertebrates than expected for fipronil alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Occupational Safety and Health Administration (OSHA) has regulated ethylene oxide (EtO) on the basis of its acute toxicity and its potential carcinogenic and reproductive effects since 1971. OSHA's 1984 EtO standard and its 1988 revisions focused new attention on health and safety training and other preventive measures. An EtO health and safety training program for hospital sterilization workers was developed by the staff of an independent occupational and environmental health clinic. Participatory and empowerment training methods were central to the approach. Also included were hands-on, demonstration, interactive presentation, and other methods. An EtO Health and Safety Training Manual was developed based on the training experiences. This paper presents the challenges, benefits, and limitations of incorporating participatory and empowerment approaches in the design, implementation, and evaluation of EtO health and safety training.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: agricultural pesticide poisoning is a major public health problem in the developing world, killing at least 250,000-370,000 people each year. Targeted pesticide restrictions in Sri Lanka over the last 20 years have reduced pesticide deaths by 50% without decreasing agricultural output. However, regulatory decisions have thus far not been based on the human toxicity of formulated agricultural pesticides but on the surrogate of rat toxicity using pure unformulated pesticides. We aimed to determine the relative human toxicity of formulated agricultural pesticides to improve the effectiveness of regulatory policy. METHODS AND FINDINGS: we examined the case fatality of different agricultural pesticides in a prospective cohort of patients presenting with pesticide self-poisoning to two clinical trial centers from April 2002 to November 2008. Identification of the pesticide ingested was based on history or positive identification of the container. A single pesticide was ingested by 9,302 patients. A specific pesticide was identified in 7,461 patients; 1,841 ingested an unknown pesticide. In a subset of 808 patients, the history of ingestion was confirmed by laboratory analysis in 95% of patients. There was a large variation in case fatality between pesticides-from 0% to 42%. This marked variation in lethality was observed for compounds within the same chemical and/or WHO toxicity classification of pesticides and for those used for similar agricultural indications. CONCLUSION: the human data provided toxicity rankings for some pesticides that contrasted strongly with the WHO toxicity classification based on rat toxicity. Basing regulation on human toxicity will make pesticide poisoning less hazardous, preventing hundreds of thousands of deaths globally without compromising agricultural needs. Ongoing monitoring of patterns of use and clinical toxicity for new pesticides is needed to identify highly toxic pesticides in a timely manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The clinical use of irinotecan (CPT-11) is hindered by dose-limiting diarrhea and myelosuppression. Recent clinical studies indicate that thalidomide, a known tumor necrosis factor-alpha inhibitor, ameliorated the toxicities induced by CPT-11. However, the mechanisms for this are unknown. This study aimed to investigate whether combination of thalidomide modulated the toxicities of CPT-11 using a rat model and the possible role of the altered pharmacokinetic component in the toxicity modulation using in vitro models. The toxicity model was constructed by treatment of healthy rats with CPT-11 at 60 mg/kg per day by intravenous (i.v.) injection. Body weight, acute and delayed-onset diarrhea, blood cell counts, and macroscopic and microscopic intestinal damages were monitored in rats treated with CPT-11 alone or combined therapy with thalidomide at 100 mg/kg administered by intraperitoneal (i.p.) injection. Single dose and 5-day multiple-dose studies were conducted in rats to examine the effects of concomitant thalidomide on the plasma pharmacokinetics of CPT-11 and its major metabolites SN-38 and SN-38 glucuronide (SN-38G). The effect of CPT-11 on thalidomide's pharmacokinetics was also checked. Rat liver microsomes and a rat hepatoma cell line, H4-II-E cells, were used to study the in vitro metabolic interactions between these two drugs. H4-II-E cells were also used to investigate the effect of thalidomide and its hydrolytic products on the transport of CPT-11 and SN-38. In addition, the effect of thalidomide and its hydrolytic products on rat plasma protein binding of CPT-11 and SN-38 was examined. Administration of CPT-11 by i.v. for 4 consecutive days to rats induced significant body weight loss, decrease in neutrophil and lymphocyte counts, severe acute- and delayed-onset diarrhea, and intestinal damages. These toxicities were alleviated when CPT-11 was combined with thalidomide. In both single-dose and 5-day multiple-dose pharmacokinetic study, coadministered thalidomide significantly increased the area under the plasma concentration-time curve (AUC) of CPT-11, but the AUC and elimination half-life (t(1/2)) of SN-38 were significantly decreased. However, CPT-11 did not significantly alter the pharmacokinetics of thalidomide. Thalidomide at 25 and 250 microM and its hydrolytic products at a total concentration of 10 microM had no significant effect on the plasma protein binding of CPT-11 and SN-38, except for that thalidomide at 250 microM caused a significant increase in the unbound fraction (f(u)) of CPT-11 by 6.7% (P < 0.05). The hydrolytic products of thalidomide (total concentration of 10 microM), but not thalidomide, significantly decreased CPT-11 hydrolysis by 16% in rat liver microsomes (P < 0.01). The formation of both SN-38 and SN-38G from CPT-11, SN-38 glucuronidation, or intracellular accumulation of both CPT-11 and SN-38 in H4-II-E cells followed Michaelis-Menten kinetics with the one-binding site model being the best fit for the kinetic data. Coincubation or 2-hr preincubation of thalidomide at 25 microM and 250 microM and its hydrolytic products at 10 microM did not show any significant effects on CPT-11 hydrolysis and SN-38 glucuronidation. However, preincubation of H4-II-E cells with thalidomide (250 microM), its hydrolytic products (total concentration of 10 microM), or phthaloyl glutamic acid (one major thalidomide hydrolytic product, 10 microM) significantly increased the intracellular accumulation of SN-38, but not CPT-11 (P < 0.01). The dose-limiting toxicities of CPT-11 were alleviated by combination with thalidomide in rats and the pharmacokinetic modulation by thalidomide may partially explain its antagonizing effects on the toxicities of CPT-11. The hydrolytic products of thalidomide, instead of the parental drug, modulated the hepatic hydrolysis of CPT-11 and intracellular accumulation of SN-38, probably contributing to the altered plasma pharmacokinetics of CPT-11 and SN-38. Further studies are needed to explore the role of both pharmacokinetics and pharmacodynamic components in the protective effect of thalidomide against the toxicities of CPT-11.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hemodialysis is only infrequently used in drug overdosage situations. The efficacy of hemodialysis to remove the drug depends upon the pharmacokinetics and pharmacodynamics of the drug. At normal therapeutic concentrations, valproic acid is predominantly protein bound and therefore removal by hemodialysis is limited. In an overdose situation, protein binding is rapidly saturated and therefore the substantially larger quantities of the free drug can rapidly cause toxicity. Slow low-efficient daily diafiltration (SLEDD) has not previously been utilized in a drug overdose situation. We report the effective use of SLEDD to remove high toxic concentrations of valproic acid in an overdose situation. Slow low-efficient daily diafiltration also prevented the rebound phenomenon that can occur as the excess drug is released from its protein-bound stores. Hybrid dialysis therapies deserve further evaluation in the management of other poisonings where extra-corporeal therapy is indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute (24 h) toxicity tests were conducted to determine the toxicity of the fungicide chlorothalonil towards the freshwater bdelloid rotifer (Philodina acuticornis odiosa). Since rotifers are the dominant zooplankton species in many inland freshwater lakes in Australia, the influence of salinity on chlorothalonil toxicty was also assessed. The rotifers used in this study appeared to be reasonably tolerant to changes in salinity, with little mortality observed at 3760 µS cm-1, increasing thereafter at higher salinity. The bdelloid rotifers were, however, found to be highly sensitive to chlorothalonil (24 h LC50, 3.2 µg L-1) with results also suggesting that as salinity increases, so does toxicity (e.g., 24 h LC50 at 5000 µS cm-1, 0.5 µg L-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Cardiac toxicity due to ingestion of oleander plant seeds in Sri Lanka and some other South Asian countries is very common. At present symptomatic oleander seed poisoning carries a mortality of 10% in Sri Lanka and treatment of yellow oleander poisoning is limited to gastric decontamination and atropine administration. The only proven effective antidote is digoxin antibodies but these are not available for routine use because of the high cost. The main objective of this study is to investigate the effectiveness of a new and inexpensive antidote for patients with life threatening arrhythmias due oleander poisoning. METHOD/DESIGN: We set up a randomised double blind clinical trial to assess the effectiveness of Fructose 1, 6 diphosphate (FDP) in acute yellow oleander poisoning patients admitted to the adult medical wards of a tertiary hospital in Sri Lanka. Patients will be initially resuscitated following the national guidelines and eligible patients will be randomised to receive either FDP or an equal amount of normal saline. The primary outcome measure for this study is the sustained reversion to sinus rhythm with a heart rate greater than 50/min within 2 hours of completion of FDP/placebo bolus. Secondary outcomes include death, reversal of hyperkalaemia on the 6, 12, 18 and 24 hour samples and maintenance of sinus rhythm on the holter monitor. Analysis will be on intention-to-treat. DISCUSSION: This trial will provide information on the effectiveness of FDP in yellow oleander poisoning. If FDP is effective in cardiac glycoside toxicity, it would provide substantial benefit to the patients in rural Asia. The drug is inexpensive and thus could be made available at primary care hospitals if proven to be effective. TRIAL REGISTRATION: Current Controlled trial ISRCTN71018309.