4 resultados para activity budget

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Activity budgets can provide a direct link to an animal's bioenergetic budget and is thus a valuable unit of measure when assessing human-induced nonlethal effects on wildlife conservation status. However, activity budget inference can be challenging for species that are difficult to observe and require multiple observational variables. Here, we assessed whether whalewatching boat interactions could affect the activity budgets of minke whales (Balaenoptera acutorostrata). We used a stepwise modeling approach to quantitatively record, identify, and assign activity states to continuous behavioral time series data, to estimate activity budgets. First, we used multiple behavioral variables, recorded from continuous visual observations of individual animals, to quantitatively identify and define behavioral types. Activity states were then assigned to each sampling unit, using a combination of hidden and observed states. Three activity states were identified: nonfeeding, foraging, and surface feeding (SF). From the resulting time series of activity states, transition probability matrices were estimated using first-order Markov chains. We then simulated time series of activity states, using Monte Carlo methods based on the transition probability matrices, to obtain activity budgets, accounting for heterogeneity in state duration. Whalewatching interactions reduced the time whales spend foraging and SF, potentially resulting in an overall decrease in energy intake of 42%. This modeling approach thus provides a means to link short-term behavioral changes resulting from human disturbance to potential long-term bioenergetic consequences in animals. It also provides an analytical framework applicable to other species when direct observations of activity states are not possible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine top-predators such as marine mammals forage in a heterogeneous environment according to their energetic requirements and to the variation in environmental characteristics. In this study, the behaviour of breeding females in 2 sympatric fur seal species, Antarctic fur seal Arctocephalus gazella and Subantarctic fur seal A. tropicalis, was investigated in relation to foraging effort. Foraging effort was hypothesised to be greater in Antarctic fur seal than in Subantarctic fur seal due to their shorter lactation period. Using satellite telemetry, time-depth recorders and satellite images of sea-surface temperature and chlorophyll a concentration, the foraging grounds, the at-sea activity budgets and the environmental features were determined for both species breeding on the Crozet Archipelago. Foraging cycle duration was similar for the 2 species, and the seals exhibited similar at-sea activity budgets. Only the proportion of time spent at sea was higher in Antarctic fur seals. Separate foraging areas were identified for the 2 species. Antarctic fur seal distribution was related to bathymetric features, while we did not find any direct relationship between chlorophyll a concentration and seal foraging areas. Our results suggest that Antarctic fur seals tend to respond to the higher needs of their pups by having a higher foraging efficiency and concentrating their foraging activity in the most productive areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In sexually dimorphic ungulates, sexual segregation is hypothesized to have evolved because of sex-specific differences in body size and/or reproductive strategies. We tested these alternative hypotheses in kangaroos, which are ecological analogues of ungulates. Kangaroos exhibit a wide range of body sizes, particularly among mature males, and so the effects of body size and sex can be distinguished. We tested predictions derived from these hypotheses by comparing the distribution of three sex–sex size classes of western grey kangaroos Macropus fuliginosus, in different habitats, and the composition of groups of kangaroos, across seasons. In accordance with the predation risk-reproductive strategy hypothesis, during the non-breeding season, females, which were more susceptible to predation than larger males, and were accompanied by vulnerable young-at-foot, were over-represented in secure habitats. Large males, which were essentially immune to predation, occurred more often than expected in nutrient-rich habitat, and small males, which faced competing demands of predator avoidance and feeding, were intermediate between females and large males in their distribution across habitats. During the breeding season, females continued to be over-represented in secure habitats when their newly emerged pouch young were most vulnerable to predation. All males occupied these same habitats to maximize their chances of securing mates. Consistent with the social hypotheses, groups composed of individuals of the same sex, irrespective of body size, were over-represented in the population during the non-breeding season, while during the breeding season all males sought females so that mixed-sex groups predominated. These results indicate that body size and reproductive strategies are both important, yet independent, factors influencing segregation in western grey kangaroos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How animals allocate their time to different behaviours has important consequences for their overall energy budget and reflects how they function in their environment. This potentially affects their ability to successfully reproduce, thereby impacting their fitness. We used accelerometers to record time-activity budgets of 21 incubating and chick-rearing kittiwakes (Rissa tridactyla) on Puffin Island, UK. These budgets were examined on a per day and per foraging trip basis. We applied activity-specific estimates of energy expenditure to the kittiwakes' time-activity budgets in order to identify the costs of variation in their allocation of time to different behaviours. Estimates of daily energy expenditure for incubating kittiwakes averaged 494 ± 20 kJ d-1 while chick-rearing birds averaged 559 ± 11 kJ d-1. Time-activity budgets highlighted that kittiwakes did not spend a large proportion of their time flying during longer foraging trips, or during any given 24-h period. With time spent flying highlighted as the driving factor behind elevated energy budgets, this suggests behavioural compensation resulting in a possible energetic ceiling to their activities. We also identified that kittiwakes were highly variable in the proportion of time they spent either flying or on the water during foraging trips. Such variation meant that using forage trip duration alone to predict energy expenditure gave a mean error of 19% when compared to estimates incorporating the proportion of a foraging trip spent flying. We have therefore highlighted that trip duration alone is not an accurate indicator of energy expenditure.