22 resultados para Zostera marina.

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In clonal plants, vegetative parts may outcompete seeds in the absence of disturbance, limiting the build-up of genotypic diversity through repeated seedling recruitment (RSR). Herbivory may provide disturbance and trigger establishment of strong colonizers (seeds) at the expense of strong competitors (clonal propagules). In the clonal aquatic fennel pondweed Potamogeton pectinatus, two distinct herbivore guilds may modify the dynamics of propagation. In winter, Bewick's swans may deplete patches of tubers, promoting seedling establishment in spring. In summer, seed consumption by waterfowl can reduce the density of viable seeds but grazing may also reduce tuber production and hence facilitate seedling establishment. This study is among the first to experimentally test herbivore impact on plant genotypic diversity. We assess the separate and combined effects of both herbivore guilds on genotypic diversity and structure of fennel pondweed beds. Using microsatellites, we genotyped P. pectinatus from an exclosure experiment and assessed the contribution of herbivory, dispersal and sexual reproduction to the population genetic structure. Despite the predominance of clonal propagation in P. pectinatus, we found considerable genotypic diversity. Within the experimental blocks, kinship among genets decreased with geographic distance, clearly identifying a role for RSR in the maintenance of genotypic diversity within the fennel pondweed beds. However, over a period of five years, none of the herbivory treatments affected genotypic diversity. Hence, sexual reproduction on a local scale is important in this putatively clonal plant and possibly sufficient to ensure a relatively high genotypic diversity even in the absence of herbivores. Although we cannot preclude a role of herbivory in shaping genotypic diversity of a clonal plant, after five years of exclusion of the two investigated herbivore guilds no measurable effect on genotypic diversity was detected. © 2014 The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Seagrasses are ecosystem engineers that offer important habitat for a large number of species and provide a range of ecosystem services. Many seagrass ecosystems are dominated by a single species, with research showing that genotypic diversity at fine spatial scales plays an important role in maintaining a range of ecosystem functions. However, for most seagrass species, information on fine-scale patterns of genetic variation in natural populations is lacking. In this study, we use a hierarchical sampling design to determine the levels of genetic and genotypic diversity at different spatial scales (centimeters, meters, kilometers) in the Australian seagrass Zostera muelleri. Our analysis shows that at fine spatial scales (<1 m), levels of genotypic diversity are relatively low (R(Plots) = 0.37 ± 0.06 SE), although there is some intermingling of genotypes. At the site (10’s m) and meadow location (km) scale, we found higher levels of genotypic diversity (R(sites) = 0.79 ± 0.04 SE; R(Locations) = 0.78 ± 0.04 SE). We found some sharing of genotypes between sites within meadows, but no sharing of genotypes between meadow locations. We also detected a high level of genetic structuring between meadow locations (FST = 0.278). Taken together, our results indicate that both sexual and asexual reproductions are important in maintaining meadows of Z. muelleri. The dominant mechanism of asexual reproduction appears to occur via localized rhizome extension, although the sharing of a limited number of genotypes over the scale of 10’s of meters could also result from the localized dispersal and recruitment of fragments. The large number of unique genotypes at the meadow scale indicates that sexual reproduction is important in maintaining these populations, while the high level of genetic structuring suggests little gene flow and connectivity between our study sites. These results imply that recovery from disturbances will occur through both sexual and asexual regeneration, but the limited connectivity at the landscape scale implies that recovery at meadow-scale losses is likely to be limited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recovery from disturbance is a key element of ecosystem persistence, and recovery can be influenced by large-scale regional differences and smaller local-scale variations in environmental conditions. Seagrass beds are an important yet threatened nearshore habitat and recover from disturbance by regrowth, vegetative extension and dispersive propagules. We described recovery pathways from small-scale disturbances in the seagrass Zostera nigricaulis in Port Phillip Bay, a large embayment in southeastern Australia, and tested whether these pathways differed between 5 regions with different hydrodynamic conditions and water quality, and between sites within those regions. Recovery pathways were broadly consistent. When aboveground biomass was removed, recovery, defined as the point at which disturbed areas converged with undisturbed controls, took from 2 to 8 mo, but when we removed above-and below-ground biomass, it took between 2 and 13 mo. There was no evidence of recovery resulting from sexual reproduction at any sites regardless of the presence of seeds in the sediment or flower production. We found no differences in recovery at the regional scale, but we found substantial differences between local sites. At some sites, rapid recovery occurred because seagrasses grew quickly, but at others, apparent recovery occurred because regrowth coincided with overall declines in cover of undisturbed areas. Recovery time was unrelated to seagrass canopy height, biomass, percentage cover, stem density, seed bank density, epiphyte cover or sediment organic matter in seagrass adjacent to disturbance experiments. This study highlights the importance of understanding fine-scale variation in local recovery mechanisms, which may override or obscure any regional signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meiofauna from Avicennia marina</i> leaf litter in a temperate mangrove forest was enumerated, and the nematode assemblages compared on the bases of leaf colour (used as a guide to leaf age) and shore horizon where samples were collected. Twenty-one putative nematode species were collected from 48 leaf litter samples. Univariate analyses indicated that neither the colour of the leaf nor the shore horizon significantly affected abundance of nematodes. However, of the four (222) treatment groups, rarefaction curves revealed highest diversity on brown leaves from under the shade of the tree canopy (H'=0.751-0.126 SE, n=17). Species diversity of leaf litter nematodes was lower in this temperate mangrove system than reported from tropical mangrove studies. ANOSIM tests confirmed a significant effect of shore horizon on nematode assemblages. The dominant feeding group among nematodes was non-selective deposit feeders (7/21 species, but 77% of all nematodes). Epigrowth grazers were represented by 8/21 species of nematodes, but only 19% of the total number. Excised leaves became skeletonised by about 15 weeks. Shorter temporal scales of life cycles of nematodes compared with leaf degradation, and the dynamic nature of epibiontic assemblages, probably explain the similar assemblage structure on yellow and brown leaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The White-faced Storm Petrel (Pelagodroma marina</i>) is restricted to three breeding colonies within Victoria: Mud Islands and South Channel Fort in Port Phillip Bay, and Tullaberga Island off Mallacoota. Numbers of these storm petrels breeding on Mud Islands have declined considerably since early last century. White-faced Storm Petrels were recorded on Mud Islands from early September 2002 until mid-March 2003 when the last chicks fledged. Eggs were laid from late October to early December, with chicks hatching in the later half of December. The mean incubation period was 51.7 days (± 3.2 days (s.d.), range = 38–53, n = 13), and may have been extended by periods of egg neglect. The mean nestling period was 54.8 days (± 4.4 days (s.d.), range 50–70, n = 21). Chick growth is described. Hatching success was 54% and fledging success was 77.8%, with overall breeding success being 42%. Burrow densities were found to be influenced by plant species, vegetation height and soil moisture. The position of the burrow within the colony was shown to influence breeding success, with those nearer the edge of the storm petrel colony, closer to the marsh, and further from a colony of Australian White (Threskiornis molucca) and Straw-necked (T. spinicollis) Ibis recording higher success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the spatial arrangement of the seagrass distribution and biomass within the Hopkins Estuary is an essential step towards gaining an understanding of the functioning of the estuarine ecosystem. This study marks the first attempt to map seagrass distribution and model seagrass biomass and epiphyte biomass along depth gradients by the use of global positioning system (GPS) and geographical information system (GIS) technologies in the estuary. For mapping seagrass in small estuaries, ground-surveying the entire system is feasible. Three species of seagrasses, Heterozostera tasmanica (Martens ex Aschers), Zostera muelleri (Irmisch ex Aschers) and Ruppia megacarpa (Mason), were identified in the Hopkins Estuary. All beds investigated contained a mixed species relationship. Three harvest techniques were trialed in a pilot study, with the 25 × 25-cm quadrat statistically most appropriate. Biomass of seagrasses and epiphytes was found to vary significantly with depth, but not between sites. The average estimate of biomass for total seagrasses and their epiphytes in the estuary in January 2000 was 222.7 g m–2 (dry weight). Of the total biomass, 50.6% or 112.7 g m–2 (dry weight) was contributed by seagrasses and 49.4% of the biomass (110.0 g m–2) were epiphytes. Of the 50.6% of the total biomass represented by seagrasses, 39.3% (87.5 g m–2) were leaves and 11.3% (25.2 g m–2) were rhizomes. The total area of seagrasses present in the Hopkins Estuary was estimated to be 0.4 ± 0.005 km2, with the total area of the estuary estimated to be 1.6 ± 0.02 km2 (25% cover). The total standing crop of seagrasses and epiphytes in the Hopkins Estuary in January 2000 was estimated to be 102.3 ± 57 t in dry weight, 56% (56.9 ± 17 t, dry weight) seagrasses and 44% (45.4 ± 19 t, dry weight) epiphytes. Of the seagrass biomass, 39% (39.7 ± 13 t, dry weight) was contributed by leaves and 17% (17.3 ± 7 t, dry weight) by rhizomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Habitat loss and modification is a major factor driving reductions of seabird populations. The white-faced storm petrel (Pelagodroma marina) is restricted to three breeding colonies within Victoria: Mud Islands and South Channel Fort in Port Phillip Bay, and Tullaberga Island off Mallacoota. The numbers of storm petrels breeding on Mud Islands and South Channel Fort have declined considerably, possibly a result of the significant vegetation changes, together with increases in local populations of other species of birds, most notably, silver gulls (Larus novaehollandiae). On Mud Islands the breeding area available to the storm petrels appears to be limited by the recent arrival of the Australian white ibis (Threskoirnis molucca), and straw-necked ibis (T. spinicollis) which now breed on the islands in large numbers (approximately 15,000 pairs). The impact of these changes on the storm petrels is poorly understood. The current status of storm petrels at Tullaberga Island is unknown. This study estimated the size of the breeding population at all three sites by determining burrow densities, and a burrow-scope was used to determine occupancy. Burrow density was found to be related to vegetation type and other habitat factors. This study has highlighted important information on the breeding habitat of the white-faced storm petrel and the implications for management are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examines the biochemistry and physiology of chlorophyllase in the marine angiosperm Zostera muelleri. Enzyme activity was found to be highly correlated with chlorophyll synthesis in developing leaf tissue. This study provides evidence for the physiological role of chlorophyllase in chlorophyll degradation and provides insights into the senescence process in seagrass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cane Toads (Rhinella marina</i>; hereafter 'toads') are large, toxic American anurans that were introduced to Australia in 1935. Research on their ecological impact has focussed on the lethal ingestion of toxic toads by native frog-eating predators. Less attention has been paid to the potential impacts of Cane Toads as predators, although these large anurans sometimes eat vertebrates, such as nestling birds and bird eggs. We review published and unpublished data on interactions between Cane Toads and Australian ground-nesting birds, and collate distributional and breeding information to identify the avian taxa potentially at risk of having eggs or chicks eaten by Cane Toads. Cane Toads are currently sympatric with 80 ground-nesting bird species in Australia, and five additional species of bird occur within the predicted future range of the toad. Although many species of bird are potentially at risk, available data suggest there is minimal impact of Cane Toads on ground-nesting species. Future research could usefully address both direct and indirect impacts of the invasion by Cane Toads, ideally with detailed field observations of these impacts on nesting success and of changes in bird breeding success as a function of invasion by toads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of invasive predators on native prey has attracted considerable scientific attention, whereas the reverse situation (invasive species being eaten by native predators) has been less frequently studied. Such interactions might affect invasion success; an invader that is readily consumed by native species may be less likely to flourish in its new range than one that is ignored by those taxa. Invasive cane toads (Rhinella marina) in Australia have fatally poisoned many native predators (e.g., marsupials, crocodiles, lizards) that attempt to ingest the toxic anurans, but birds are more resistant to toad toxins. We quantified prey preferences of four species of wading birds (Nankeen night heron, purple swamphen, pied heron, little egret) in the wild, by offering cane toads and alternative native prey items (total of 279 trays offered, 14 different combinations of prey types). All bird species tested preferred the native prey, avoiding both tadpole and metamorph cane toads. Avoidance of toads was strong enough to reduce foraging on native prey presented in combination with the toads, suggesting that the presence of cane toads could affect predator foraging tactics, and reduce the intensity of predation on native prey species found in association with toads.