182 resultados para Zirconium alloys

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Development of new biodegradable implants and devices is necessary to meet the increasing needs of regenerative orthopedic procedures. An important consideration while formulating new implant materials is that they should physicochemically and biologically mimic bone-like properties. In earlier studies, we have developed and characterized magnesium based biodegradable alloys, in particular magnesium-zirconium (Mg-Zr) alloys. Here we have reported the biological properties of four Mg-Zr alloys containing different quantities of strontium or calcium. The alloys were implanted in small cavities made in femur bones of New Zealand White rabbits, and the quantitative and qualitative assessments of newly induced bone tissue were carried out. A total of 30 experimental animals, three for each implant type, were studied, and bone induction was assessed by histological, immunohistochemical and radiological methods; cavities in the femurs with no implants and observed for the same period of time were kept as controls. Our results showed that Mg-Zr alloys containing appropriate quantities of strontium were more efficient in inducing good quality mineralized bone than other alloys. Our results have been discussed in the context of physicochemical and biological properties of the alloys, and they could be very useful in determining the nature of future generations of biodegradable orthopedic implants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The successful applications of magnesium (Mg) alloys as biodegradable orthopedic implants are mainly restricted due to their rapid degradation rate in the physiological environment, leading to a loss of mechanical integrity. This study systematically investigated the degradation behaviors of novel Mg-Zr-Sr alloys using electrochemical techniques, hydrogen evolution, and weight loss in simulated body fluid (SBF). The microstructure and degradation behaviors of the alloys were characterized using optical microscopy, XRD, SEM, and EDX. The results indicate that Zr and Sr concentrations in Mg alloys strongly affected the degradation rate of the alloys in SBF. A high concentration of 5 wt% Zr led to acceleration of anodic dissolution, which significantly decreased the biocorrosion resistance of the alloys and their biocompatibility. A high volume fraction of Mg17Sr2 phases due to the addition of excessive Sr (over 5 wt%) resulted in enhanced galvanic effects between the Mg matrix and Mg17Sr2 phases, which reduced the biocorrosion resistance. The average Sr release rate is approximately 0.15 mg L-1 day-1, which is much lower than the body burden and proves its good biocompatibility. A new biocorrosion model has been established to illustrate the degradation of alloys and the formation of degradation products on the surface of the alloys. It can be concluded that the optimal concentration of Zr and Sr is less than 2 wt% for as-cast Mg-Zr-Sr alloys used as biodegradable orthopedic implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anodization of titanium and its alloys, under controlled conditions, generates a nanotubular architecture on the material surface. The biological consequences of such changes are poorly understood, and therefore, we have analyzed the cellular and molecular responses of osteoblasts that were plated on nanotubular anodized surface of a titanium-zirconium (TiZr) alloy. Upon comparing these results with those obtained on acid etched and polished surfaces of the same alloy, we observed a significant increase in adhesion and proliferation of cells on anodized surfaces as compared to acid etched or polished surface. The expression of genes related to cell adhesion was high only on anodized TiZr, but that of genes related to osteoblast differentiation and osteocalcin protein and extracellular matrix secretion were higher on both anodized and acid etched surfaces. Examination of surface morphology, topography, roughness, surface area and wettability using scanning electron microscopy, atomic force microscopy, and contact angle goniometry, showed that higher surface area, hydrophilicity, and nanoscale roughness of nanotubular TiZr surfaces, which were generated specifically by the anodization process, could strongly enhance the adhesion and proliferation of osteoblasts. We propose that biological properties of known bioactive titanium alloys can be further enhanced by generating nanotubular surfaces using anodization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis examined the behavior of osteoblast cells in response to material surfaces. Cell behavior at the cellular and molecular level on Ti and two Ti alloys (TiZr and TiNb) in response to their material surface properties were evaluated at different stages of cell-material interactions namely adhesion, proliferation and differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium (Mg) based alloys have been extensively considered for their use as biodegradable implant materials. However, controlling their corrosion rate in the physiological environment of the human body is still a significant challenge. One of the most effective approaches to address this challenge is to carefully select alloying compositions with enhanced corrosion resistance and mechanical properties when designing the Mg alloys. This paper comprehensively reviews research progress on the development of Mg alloys as biodegradable implant materials, highlighting the effects of alloying elements including aluminum (Al), calcium (Ca), lithium (Li), manganese (Mn), zinc (Zn), zirconium (Zr), strontium (Sr) and rare earth elements (REEs) on the corrosion resistance and biocompatibility of Mg alloys, from the viewpoint of the design and utilization of Mg biomaterials. The REEs covered in this review include cerium (Ce), erbium (Er), lanthanum (La), gadolinium (Gd), neodymium (Nd) and yttrium (Y). The effects of alloying elements on the microstructure, corrosion behavior and biocompatibility of Mg alloys have been critically summarized based on specific aspects of the physiological environment, namely the electrochemical effect and the biological behavior. This journal is © the Partner Organisations 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of biomaterial surfaces and their influence on cell behavior provide insights concerning the design of surface physicochemical and topography properties of implant materials. Fabrication of biocompatible metal oxide nanotubes on metallic biomaterials, especially titanium alloys such as Ti50Zr via anodization, alters the surface chemistry as well as surface topography of the alloy. In this study, four groups of TiO2-ZrO2-ZrTiO4 nanotubes that exhibit diverse nanoscale dimensional characteristics (i.e. inner diameter Di, outer diameter Do and wall thicknesses Wt) were fabricated via anodization. The nanotubes were annealed and characterized using scanning electron microscopy and 3-D profilometry. The potential applied during anodization influenced the oxidation rate of titanium and zirconium, thereby resulting in different nanoscale characteristics for the nanotubes. The different oxidation and dissolution rates both led to changes in the surface roughness parameters. The in vitro cell response to the nanotubes with different nanoscale dimensional characteristics was assessed using osteoblast cells (SaOS2). The results of the MTS assay indicated that the nanotubes with inner diameter (Di)≈40nm exhibited the highest percentage of cell adhesion of 41.0%. This result can be compared to (i) 25.9% cell adhesion at Di≈59nm, (ii) 33.1% at Di≈64nm, and (iii) 33.5% at Di≈82nm. The nanotubes with Di≈59nm exhibited the greatest roughness parameter of Sa (mean roughness), leading to the lowest ability to interlock with SaOS2 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A magnesium alloy of eutectic composition (33 wt-'%Al) was directionally solidified in mild steel tubes at two growth rates, 32 and 580 mum s(-1,) in a temperature gradient between 10 and 20 K mm(-1). After directional solidification, the composition of each specimen varied dramatically, from 32'%Al in the region that had remained solid to 18%Al (32 mum s(-1) specimen) and 13%Al (580 mum s(-1) specimen) at the plane that had been quenched from the eutectic temperature. As the aluminium content decreased, the microstructure contained an increasing volume fraction of primary magnesium dendrites and the eutectic morphology gradually changed from lamellar to partially divorced. The reduction in aluminium content was caused by the growth of an Al-Fe phase ahead of the Mg-Al growth front. Most of the growth of the Al-Fe phase occurred during the remelting period before directional solidification. The thickness of the Al-Fe phase increased with increased temperature and time of contact with the molten Mg-Al alloy. (C) 2003 Maney Publishing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using dimensional analysis and the finite element method, the spherical indentation hardness of shape memory alloys (SMAs) is investigated. The scaling relationship between the hardness and the mechanical properties of a SMA, such as the forward transformation stress, the maximum transformation strain magnitude, has been derived. Numerical results demonstrated that the hardness increases with the indentation depth but there is no three-fold relationship between the hardness and the forward transformation stress. Increasing the maximum transformation strain magnitude would reduce the hardness of the material. These research results enhance our understanding of the hardness from the spherical indentation of SMAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape memory alloys (SMAs) exhibit two very important properties: shape memory phenomenon and superelastic deformation due to intrinsic thermoelastic martensitic transformation. To fully exploit the potential of SMAs in developing functional structures or smart structures in mechanical and biomechanical engineering, it is important to understand and quantify the failure mechanisms of SMAs. This paper presents a theoretical study of the effect of phase-transformation-induced volume contraction on the fracture properties of superelastic SMAs. A simple model is employed to account for the forward and reverse phase transformation with pure volume change, which is then applied to numerically study the transformation field near the tip of a tensile crack. The results reveal that during steady-state crack propagation, the transformation zone extends ahead of the crack tip due to forward transformation while partial reverse transformation occurs in the wake. Furthermore, as a result of the volume contraction associated with the austenite-to-martensite transformation, the induced stress-intensity factor is positive. This is in stark contrast with the negative stress-intensity factor achieved in zirconia ceramics, which undergoes volume expansion during phase transformation. The reverse transformation has been found to have a negligible effect on the induced stress-intensity factor. An important implication of the present results is that the phase transformation with volume contraction in SMAs tends to reduce their fracture resistance and increase the brittleness.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical indentation of superelastic shape memory alloys (SMAs) has been theoretically analyzed. Two characteristic points on the superelastic indentation curve have been discovered. The bifurcation force corresponding to the bifurcation point relies on the forward transformation stress and the return force corresponding to the return point relies on the reverse transformation stress.
Based on these theoretical relationships, an approach to determine the transformation stresses of superelastic SMAs has been proposed. To improve the accuracy of the measurement, a slope method to locate the two characteristic points from the slope curves is further suggested. Additionally, the spherical indentation hardness was also analyzed.