7 resultados para ZRO2

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To overcome the interference of acetone when detecting alcohol, a novel alcohol detector based on zirconia-doped SnO2 nanofibers were fabricated through electrospinning technique and calcination process. The samples have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and their gas sensing properties have also been investigated. When exposed to alcohol vapor, the nanofibers containing 15 mol% zirconia exhibit the best sensing properties. Moreover, the sensor holds the successful discrimination between acetone and alcohol, which makes our product a good candidate in fabricating highly selective sensors in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of biomaterial surfaces and their influence on cell behavior provide insights concerning the design of surface physicochemical and topography properties of implant materials. Fabrication of biocompatible metal oxide nanotubes on metallic biomaterials, especially titanium alloys such as Ti50Zr via anodization, alters the surface chemistry as well as surface topography of the alloy. In this study, four groups of TiO2-ZrO2-ZrTiO4 nanotubes that exhibit diverse nanoscale dimensional characteristics (i.e. inner diameter Di, outer diameter Do and wall thicknesses Wt) were fabricated via anodization. The nanotubes were annealed and characterized using scanning electron microscopy and 3-D profilometry. The potential applied during anodization influenced the oxidation rate of titanium and zirconium, thereby resulting in different nanoscale characteristics for the nanotubes. The different oxidation and dissolution rates both led to changes in the surface roughness parameters. The in vitro cell response to the nanotubes with different nanoscale dimensional characteristics was assessed using osteoblast cells (SaOS2). The results of the MTS assay indicated that the nanotubes with inner diameter (Di)≈40nm exhibited the highest percentage of cell adhesion of 41.0%. This result can be compared to (i) 25.9% cell adhesion at Di≈59nm, (ii) 33.1% at Di≈64nm, and (iii) 33.5% at Di≈82nm. The nanotubes with Di≈59nm exhibited the greatest roughness parameter of Sa (mean roughness), leading to the lowest ability to interlock with SaOS2 cells.