100 resultados para ZINC TUBULAR REABSORPTION

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentrations of cadmium, copper, mercury, and zinc were determined in muscle (body, claw, and leg), hepatopancreas, and gill tissues of Pseudocarcinus gigas, an exceptionally large, long-lived, and deep-dwelling crab species. The accumulation patterns observed are discussed in terms of both intra- and interspecies variations, with particular attention to the possible consequences of the extreme size and depth range of P. gigas. Metal concentrations did not depend significantly on sex of the crab. Significant differences between tissues were detected for all metals, and the distribution of metal between the tissues was different for each metal. Significant correlations were found between metal concentrations in the various tissues and crab size, and these are discussed and rationalised. The concentrations of mercury and zinc in muscle tissue increased with crab size and were high compared to other crab species. The concentrations of cadmium and copper present in edible tissues were not especially high compared to other crab species, but the concentration of cadmium in the hepatopancreas is of dietary concern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc is an essential trace element required by all living organisms. An adequate supply of zinc is particularly important in the neonatal period. Zinc is a significant component of breast milk, which is transported across the maternal epithelia during lactation. The mechanisms by which zinc becomes a constituent of breast milk have not been elucidated. The function of the zinc transporter ZnT4 in the transport of zinc into milk during lactation was previously demonstrated by studies of a mouse mutant, the ‘lethal milk’ mouse, where a mutation in the ZnT4 gene decreased the transport of zinc into milk. In the present study, we have investigated the expression of the human orthologue of ZnT4 (hZnT4) in the human breast. We detected hZnT4 mRNA expression in the tissue from the resting and lactating human breast, using reverse-transcriptase PCR. Western-blot analysis using antibodies to peptide sequences of hZnT4 detected a major band of the predicted size of 47 kDa and a minor band of 77 kDa, in extracts from the resting and lactating breast tissues. There was no difference in the hZnT4 expression levels between lactating and resting breasts. The hZnT4 protein was present in the luminal cells of the ducts and alveoli where it had a granular distribution. A cultured human breast epithelial cell line PMC42 was used to investigate the subcellular distribution of hZnT4 and this showed a granular label throughout the cytoplasm, consistent with a vesicular localization. The presence of zinc-containing intracellular vesicles was demonstrated by using the zinc-specific fluorphore Zinquin (ethyl-[2-methyl-8-p-toluenesulphonamido-6-quinolyloxy]acetate). Double labelling indicated that there was no obvious overlap between Zinquin and the hZnT4 protein, suggesting that hZnT4 was not directly involved in the transport of zinc into vesicles. We detected expression of two other members of the hZnT family, hZnT1 and hZnT3, in human breast epithelial cells. We conclude that hZnT4 is constitutively expressed in the human breast and may be one of the several members of the ZnT family involved in the transport of zinc into milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc deficiency, causing impaired growth and development, may have a nutritional or genetic basis. We investigated two cases of inherited zinc deficiency found in breast-fed neonates, caused by low levels of zinc in the maternal milk. This condition is different from acrodermatitis enteropathica but has similarities to the "lethal milk" mouse, where low levels of zinc in the milk of lactating dams leads to zinc deficiency in pups. The mouse disorder has been attributed to a defect in the ZnT4 gene. Little is known about the expression of the human orthologue, hZnT4 (Slc30A4). Sequence analysis of cDNA, real-time PCR and Western blot analysis of hZnT4, carried out on control cells and cells from unrelated mothers of two infants with zinc deficiency, showed no differences. The hZnT4 gene was highly expressed in mouthwash buccal cells compared with lymphoblasts and fibroblasts. The hZnT4 protein did not co-localise with intracellular free zinc pools, suggesting that hZnT4 is not involved in transport of zinc into vesicles destined for secretion into milk. This observation, combined with phenotypic differences between the "lethal milk" mouse and the human disorder, suggests that the "lethal milk" mouse is not the corresponding model for the human zinc deficiency condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of riluzole (Ril), creatine (Cr) and a combination of these treatments on the onset and progression of clinical signs and neuropathology in an animal model of familial amyotrophic lateral sclerosis, the G93A transgenic mouse (n=13–17 per group). The onset of clinical signs was delayed (P<0.05) by about 12 days in all treatment groups compared with control; however, no differences occurred between treatments. All animals were killed at 199 days of age. At the end of the experimental period the severity of clinical signs was less (P<0.05) with all treatments compared with control. Again no differences between treatments were observed. The treatments had no effect on the number of neurons in ventral horns of the lumbar region of the spinal cord. Transgenic mice ingesting Cr displayed elevated (P<0.05) total Cr levels in cerebral hemispheres (5%) and spinal cord (8%), but not skeletal muscles. These data demonstrate that treatment with Ril and Cr were both effective in delaying disease onset and clinical disability. To the age of killing, no additional benefit was conferred by co-administration of Ril and Cr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & Aims
Nutrients putatively implicated in pressure ulcer healing were evaluated in a clinical setting.

Methods
Sixteen inpatients with a stage 2, 3 or 4 pressure ulcer randomised to receive daily a standard hospital diet; a standard diet plus two high-protein/energy supplements; or a standard diet plus two high-protein/energy supplements containing additional arginine (9 g), vitamin C (500 mg) and zinc (30 mg). Nutritional status measurements (dietary, anthropometric and biochemical) and pressure ulcer size and severity (by PUSH tool; Pressure Ulcer Scale for Healing; 0=completely healed, 17=greatest severity) were measured weekly for 3 weeks.

Results
Patients’ age and BMI ranges were 37–92 years and 16.4–28.1 kg/m2, respectively. Baseline PUSH scores were similar between groups (8.7±0.5). Only patients receiving additional arginine, vitamin C and zinc demonstrated a clinically significant improvement in pressure ulcer healing (9.4±1.2 vs. 2.6±0.6; baseline and week 3, respectively; P<0.01). All patient groups presented with low serum albumin and zinc and elevated C-reactive protein. There were no significant changes in biochemical markers, oral dietary intake or weight in any group.

Conclusions
In this small set of patients, supplementary arginine, vitamin C and zinc significantly improved the rate of pressure ulcer healing. The results need to be confirmed in a larger study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc is an essential trace element required by all living organisms because of its critical roles both as a structural component of proteins and as a cofactor in enzyme catalysis. The importance of zinc in human metabolism is illustrated by the effects of zinc deficiency, which include a diminished immune response, reduced healing and neurological disorders. Furthermore, nutritional zinc deficiency can be fatal in newborn or growing animals. While zinc deficiency is commonly caused by dietary factors, several inherited defects of zinc deficiency have been identified. Acrodermatitis enteropathica is the most commonly described inherited condition found in humans. In several of the few cases that have been reported, this disorder is associated with mutations in the hZIP4 gene, a member of the SLC39 family, whose members encode membranebound putative zinc transporters. Mutations in other members of this family or in different genes may account for other cases of acrodermatitis in which defects in hZIP4 have not been detected. Another inherited form of zinc deficiency occurs in the lethal milk mouse, where a mutation in ZnT4 gene, a member of the SLC30 family of transmembrane proteins results in impaired secretion of zinc into milk from the mammary gland. A similar disorder to the lethal milk mouse occurs in humans. In the few cases studied, no changes in ZnT4 orthologue, hZnT4, were detected. This, and the presence of several minor phenotypic differences between the zinc deficiency in humans and mice, suggests that the human condition is caused by defects in genes that are yet to be identified. Taking into account the fact that there are no definitive tests for zinc deficiency and that this disorder can go undiagnosed, plus the recent identification of multiple members of the SCL30 and SLC39, it is likely that mutations in other genes may underlie additional inherited disorders of zinc deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous experimental studies have been carried out to investigate the collapse of tubular metallic crash structures under axial compression. Some simple theoretical models have been developed but these often assume one type of progressive collapse, which is not always representative of the real situation. Finite Element (FE) models, when further refined, have the potential to predict the actual collapse mode and how it influences the load-displacement and energy absorption characteristics. This paper describes an FE modelling investigation with the explicit code LS−DYNA. An automatic mesh generation programme written by the authors is used to set up shell and solid element tube models. Mesh specification issues and features relating to the contact and friction models are discussed in detail. The crush modes, load-deflection characteristics and energy absorption values found in the simulations are compared with a reasonable degree of correlation to those observed in a physical testing programme; however, improvements are still required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trace element zinc is essential for the survival and function of all cells. Zinc deficiency, whether nutritional or genetic, is fatal if left untreated. The effects of zinc deficiency are particularly obvious in the skin, seen as an erythematous rash, scaly plaques, and ulcers. Electron microscopy reveals degenerative changes within keratinocytes. Despite the well-documented association between zinc deficiency and skin pathology, it is not clear which cellular processes are most sensitive to zinc deficiency and could account for the typical pathological features. We used the cultured HaCaT keratinocyte line to obtain insight into the cellular effects of zinc deficiency, as these cells show many characteristics of normal skin keratinocytes. Zinc deficiency was induced by growing cells in the presence of the zinc chelator, TPEN, or by growth in zinc-deficient medium. Growth of cells in zinc-deficient medium resulted in a 44% reduction of intracellular zinc levels and a 75% reduction in the activity of the zinc-dependent enzyme, 5'-nucleotidase, relative to the control cells. Over a period of 7 days of exposure to zinc-deficient conditions, no changes in cell viability and growth, or in the cytoskeletal and cell adhesion systems, were found in HaCaT cells. At 7 days, however, induction of apoptosis was indicated by the presence of DNA fragmentation and expression of active caspase-3 in cells. These results demonstrate that apoptosis is the earliest detectable cellular change induced by zinc deficiency in HaCaT keratinocytes. Our observations account for many of the features of zinc deficiency, including the presence of degenerate nuclei, chromatin aggregates and abnormal organization of keratin, that may represent the later stages of apoptosis. In summary, a major causal role for apoptosis in the pathology of zinc deficiency in the skin is proposed. This role is consistent with the previously unexplained diverse range of degenerative cellular changes seen at the ultrastructural level in zinc-deficient keratinocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Zinc sulfate is known to inhibit the bitterness of the antimalarial agent quinine [R. S. J. Keast. The effect of zinc on human taste perception. J. Food Sci. 68:1871–1877 (2003)]. In the present work, we investigated whether zinc sulfate would inhibit other bitter-tasting compounds and pharmaceuticals. The utility of zinc as a general bitterness inhibitor is compromised, however, by the fact that it is also a good sweetness inhibitor [R. S. J. Keast, T. Canty, and P. A. S. Breslin. Oral zinc sulfate solutions inhibit sweet taste perception. Chem. Senses 29:513–521 (2004)] and would interfere with the taste of complex formulations. Yet, zinc sulfate does not inhibit the sweetener Na-cyclamate. Thus, we determined whether a mixture of zinc sulfate and Na-cyclamate would be a particularly effective combination for bitterness inhibition (Zn) and masking (cyclamate).

Method We used human taste psychophysical procedures with chemical solutions to assess bitterness blocking.

Results Zinc sulfate significantly inhibited the bitterness of quinine–HCl, Tetralone, and denatonium benzoate (DB) (p < 0.05), but had no significant effect on the bitterness of sucrose octa-acetate, pseudoephedrine (PSE), and dextromethorphan. A second experiment examined the influence of zinc sulfate on bittersweet mixtures. The bitter compounds were DB and PSE, and the sweeteners were sucrose (inhibited by 25 mM zinc sulfate) and Na-cyclamate (not inhibited by zinc sulfate). The combination of zinc sulfate and Na-cyclamate most effectively inhibited DB bitterness (86%) (p < 0.0016), whereas the mixture's inhibition of PSE bitterness was not different from that of Na-cyclamate alone.

Conclusion A combination of Na-cyclamate and zinc sulfate was most effective at inhibiting bitterness. Thus, the combined use of peripheral oral and central cognitive bitterness reduction strategies should be particularly effective for improving the flavor profile of bitter-tasting foods and pharmaceutical formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the ability of zinc sulfate (5, 25, 50 mM) to inhibit the sweetness of 12 chemically diverse sweeteners, which were all intensity matched to 300 mM sucrose [800 mM glucose, 475 mM fructose, 3.25 mM aspartame, 3.5 mM saccharin, 12 mM sodium cyclamate, 14 mM acesulfame-K, 1.04 M sorbitol, 0.629 mM sucralose, 0.375 mM neohesperidin dihydrochalcone (NHDC), 1.5 mM stevioside and 0.0163 mM thaumatin]. Zinc sulfate inhibited the sweetness of most compounds in a concentration dependent manner, peaking with 80% inhibition by 50 mM. Curiously, zinc sulfate never inhibited the sweetness of Na-cyclamate. This suggests that Na-cyclamate may access a sweet taste mechanism that is different from the other sweeteners, which were inhibited uniformly (except thaumatin) at every concentration of zinc sulfate. We hypothesize that this set of compounds either accesses a single receptor or multiple receptors that are inhibited equally by zinc sulfate at each concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc salts are added as a nutritional or functional ingredient in food and oral care products. The 1st experiment in this study investigated the taste and somatosensory effect of zinc salts (chloride, iodide, sulfate, bromide, acetate). The zinc salts had very little taste (bitter, salty, savory, sour, sweet), and the taste that was present was easily washed away with water rinses. The major oral quality of zinc was astringency, and the astringency lingered beyond expectoration. The 2nd experiment combined zinc salts with prototypical stimuli eliciting basic tastes. Zinc was a potent inhibitor of sweetness and bitterness (>70% reduction in taste) but did not affect salt, savory, or sour taste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular effects of biodiesel emissions particulate matter (BDEP) and petroleum diesel emissions particulate matter (PDEP) were compared using a human airway cell line, A549. At concentrations of 25 µg/ml, diesel particulate matter induced the formation of multinucleate cells. In cells treated with a mixture of 80% PDEP:20% BDEP, 52% of cells were multinucleate cells compared with only 16% of cells treated with 20% PDEP:80% BDEP with a background multinucleate rate of 7%. These results demonstrate a causal relation between the formation of multinucleate cells and exposure to exhaust particulate matter, in particular diesel exhaust. Exposure of A549 cells to PDEP induced apoptosis, seen by active caspase-3 expression and the presence of cleaved pancytokeratin. PDEP exhaust was a much stronger inducer of cellular death through apoptosis than BDEP. There was an eightfold increase in the expression of SLC30A3 (zinc transporter-3 or ZnT3) in cells exposed to 80% PDEP:20% BDEP compared to untreated cells. The increase in ZnT3 expression seen in apoptotic cells following PDEP suggests a role for this zinc transporter in the apoptotic pathway, possibly through controlling zinc fluxes. As exposure to diesel exhaust particles is associated with asthma and apoptosis in airway cells, diesel exhaust particles may directly contribute to asthma by inducing epithelial cell death through apoptotic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By reaction of Zn(CH3COO)2 with p,p′-diphenylmethylenediphosphinic acid in water a new inorganic–organic polymeric hybrid of formula [Zn(CH2(P(Ph)O2)2)] has been synthesized and completely characterized. The X-ray analysis established that the structure consists of 2D-layered polymeric array, the 2D-sheets being built up through strong covalent linkages between the zinc metal and the oxygen donors of the phenylphosphinate ligand. The 2D-layers, which are featuring a mesh-net fashion, present voids of various dimensionality, up to 24-membered rings. The organic parts of the hybrid ligand, namely the phenyl rings, are shielding the inorganic skeleton of the layers, preventing the propagation of the polymer in the third dimension. No water molecules are present in the lattice, both of coordination and crystallization. Crystal data are: monoclinic, P21Ic, a=11.840(2), b=9.646(9), c=12.516(5) Å, β=95.03(2), V=1423.9(15) Å3, Z=4. The solid material has been characterized by 31P MAS NMR spectroscopy and thermogravimetric analysis.