2 resultados para Yolk syncyctial layer

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine cartilaginous fish retain a high concentration of urea to maintain the plasma slightly hyperosmotic to the surrounding seawater. In adult fish, urea is produced by hepatic and extrahepatic ornithine urea cycles (OUCs). However, little is known about the urea retention mechanism in developing cartilaginous fish embryos. In order to address the question as to the mechanism of urea-based osmoregulation in developing embryos, the present study examined the gene expression profiles of OUC enzymes in oviparous holocephalan elephant fish (Callorhinchus milii) embryos. We found that the yolk sac membrane (YSM) makes an important contribution to the ureosmotic strategy of the early embryonic period. The expression of OUC enzyme genes was detectable in the embryonic body from at least stage 28, and increased markedly during development to hatching, which is most probably due to growth of the liver. During the early developmental period, however, the expression of OUC enzyme genes was not prominent in the embryonic body. Meanwhile, we found that the mRNA expression of OUC enzymes was detected in the extra-embryonic YSM; the mRNA expression of cmcpsIII in the YSM was much higher than that in the embryonic body during stages 28-31. Significant levels of enzyme activity and the existence of mitochondrial-type cmgs1 transcripts in the YSM supported the mRNA findings. We also found that the cmcpsIII transcript is localized in the vascularized inner layer of the YSM. Taken together, our findings demonstrate for the first time that the YSM is involved in urea-based osmoregulation during the early to mid phase of development in oviparous cartilaginous fish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of lipids in providing energy and structural cellular components during vertebrate development is poorly understood. To elucidate these roles further, we visualized lipid deposition and examined expression of key lipid-regulating genes during zebrafish embryogenesis. We also conducted a semiquantitative analysis of lipidomic composition using liquid chromatography (LC)-mass spectrometry. Finally, we analyzed processing of boron-dipyrromethene (BODIPY) lipid analogs injected into the yolk using thin layer chromatography. Our data reveal that the most abundant lipids in the embryo are cholesterol, phosphatidylcholine, and triglyceride. Moreover, we demonstrate that lipids are processed within the yolk prior to mobilization to the embryonic body. Our data identify a metabolically active yolk and body resulting in a dynamic lipid composition. This provides a foundation for studying lipid biology during normal or pharmacologically compromised embryogenesis.