4 resultados para XPS RESULTS

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the major problems associated with the use of polypyrrole (PPy) in a practical engineering application is its poor thermal stability at elevated temperatures, especially in the presence of oxygen and moisture. Several authors have shown that enhanced stability can be achieved through treatment with simple acids and bases. This paper presents a summary of the possible structural changes which occur as a result of these treatments and those that appear to be related to enhanced conductivity stability. A slight increase in conductivity (10–20%) is observed for acid treated PPy films which is found to be the result of protonation of the pyrrole structure. This effect is dramatically enhanced by treatment at high temperatures where an increase in conductivity of >84% can be achieved. Base treatment of the PPy films results in the deprotonation of the pyrrole structure leading to the loss of conductivity (>40%). Preliminary X-ray Photoelectron Spectroscopy (XPS) results indicate that both acid and base treatment resulted in the elimination of reactive sites for oxygen. Long term thermal ageing of these treated films were conducted at 150 °C in air. The conductivity decay behaviour was found to follow multiple first order chemical reaction kinetics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study of the synthesis of hexagonal boron carbo-nitride (h-BCN) compounds via a two-step high-temperature and high-pressure (HTHP) technique using melamine (C 3N 6H 6) and boron oxide (B 2O 3) as raw materials is presented. An amorphous BCN precursor was prepared at 1000K under vacuum in a resistance furnace and then single-phase h-BCN nanocrystalline was synthesized at 1600K and 5.1GPa in a multi-anvil apparatus. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the final products were pure h-BCN crystals with the lattice constants a ≤ 0.2510nm and c ≤ 0.6690nm. The average grain size was about 150nm. X-ray photoelectron spectroscopy (XPS) results confirmed the occurrence of bonding between C-C, C-N, C-B and N-B atoms. Raman scattering analysis suggested that there were three strong Raman bands centered at 1359, 1596 and 1617cm -1, respectively. The band at 1617cm -1 was considered to be consistent with the characteristic Raman peak of h-BCN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

 A super conductive graphene with continuous three dimensional (3D) porous structures that can potentially be used as flexible conductors has been produced by one step reduction of graphene oxide (GO) film. The high renaissance properties have been demonstrated by mechanical and electrical results where a noticeable increase in the electrical conductivity to 3850 S/cm has been demonstrated after embedding the 3D graphene foam into nearly insulated polydimethylsiloxane (PDMS). The graphene integrated PDMS film has a higher strain up to 100% elongation compared with the strain of only 60% for PDMS. Fourier transform infrared (FTIR) and x-ray photoemission spectroscopy (XPS) results reveal that most oxidized groups have been removed, which contributes to the renaissance of most outstanding properties of graphene because of the recovery of sp2 carbon structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-assembled silk fibroin (SF)-polyethylenimine (PEI) multilayered films were fabricated on ethanol treated electrospun SF nanofibrous substrates via the electrostatic layer-by-layer (LBL) adsorption. The film coated membranes were characterized using scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray photoelectron spectrophotometer (XPS). The SEM images showed that the multilayers of SF-PEI were formed on the surface of the ethanol treated SF nanofibres. The characteristics such as the fiber shape and porous structure were well maintained as the number of the coated SF-PEI bilayers was less than five. However, obvious adhesive substances and blocked pores were observed on the surface of the fibers as the number of bilayers of SF-PEI increased to six. Furthermore, the obvious core-shell structures were observed by TEM. The thickness of five SF-PEI bilayers was approximately 80nm. Additionally, the XPS results also revealed that the SF-PEI multilayer composite membranes formed. The adsorption mainly depended on a simple electrostatic interaction between the layers of SF and PEI. These SF-PEI multilayer assembled nanofibrous membranes could be a promising material for use as a sensor, gene delivery agent and scaffolds.