4 resultados para Woodwardia japonica

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natriuretic peptides are linked to osmoregulation, cardiovascular and volume regulation in fishes. The peptides bind to two guanylyl-cyclase-linked receptors, natriuretic peptide receptor-A (NPR-A) and NPR-B, to elicit their effects. Atrial natriuretic peptide (ANP) binds principally to NPR-A, whereas C-type natriuretic peptide (CNP) binds to NPR-B. The teleost kidney has an important role in the maintenance of fluid and electrolyte balance; therefore, the location of NPR-A and NPR-B in the kidney could provide insights into the functions of natriuretic peptides. This study used homologous, affinity purified, polyclonal antibodies to NPR-A and NPR-B to determine their location in the kidney of the Japanese eel, Anguilla japonica. Kidneys from freshwater and seawater acclimated animals were fixed overnight in 4% paraformaldehyde before being paraffin-embedded and immunostained. NPR-A immunoreactivity was found on the apical membrane of proximal tubule 1 and the vascular endothelium including the glomerular capillaries. In contrast, NPR-B immunoreactivity was located on the smooth muscle of blood vessels including the glomerular afferent and efferent arterioles, and on smooth muscle tissue surrounding the collecting ducts. No difference in the distribution of NPR-A and NPR-B was observed between freshwater and seawater kidneys. Immunoreactivity was not observed in any tissue in which the antibodies had been preabsorbed. In addition, there was no difference in NPR-A and NPR-B mRNA expression between freshwater-acclimated and seawater-acclimated eels. These results suggest that, although utilizing the same second messenger system, ANP and CNP act on different targets within the kidney and presumably elicit different effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immunocompetence handicap hypothesis (ICHH) suggests that the male sex hormone testosterone has a dual effect; it controls the development and expression of male sexually selected signals, and it suppresses the immune system. Therefore only high quality males are able to fully express secondary sexual traits because only they can tolerate the immunosuppressive qualities of testosterone. A modified version of the ICHH suggests that testosterone causes immunosuppression indirectly by increasing the stress hormone corticosterone (CORT). Lines of Japanese quail (Coturnix japonica) selected for divergent responses in levels of plasma CORT were used to test these hypotheses. Within each CORT response line (as well as in a control stock) we manipulated levels of testosterone in castrated quail by treatment with zero (sham), low or high testosterone implants, before testing the birdsʼ humoral immunity and phytohaemagglutinin (PHA)-induced immune response, as well as body condition. The PHA-induced response was not significantly affected by CORT selected line, testosterone treatment or their interaction. There was, however, a significant effect of CORT line on humoral immunity in that the control birds exhibited the greatest antibody production, but there was no significant effect of testosterone manipulation on humoral immunity. The males in the sham implant treatment group had significantly greater mass than the males in the high testosterone group, suggesting a negative effect of high testosterone on general body condition. We discuss these results in the context of current hypotheses in the field of sexual selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mammals, adrenomedullin (AM) is a potent vasodilator through signalling pathways that involve the endothelium. In teleost fishes, a family of five AMs are present (AM1/4, AM2/3 and AM5) with four homologous AMs (AM1, AM2/3 and AM5) recently cloned from the Japanese eel, Anguilla japonica. Both AM2 and AM5 have been shown to be strong in vivo vasodepressors in eel, but the mechanism of action of homologous AMs on isolated blood vessels has not been examined in teleost fish. In this study, both eel AM2 and AM5 caused a marked vasodilation of the dorsal aorta. However, only AM5 consistently dilated the small gonadal artery in contrast to AM2 that had no effect in most preparations. Neither AM2 nor AM5 had any effect when applied to the first afferent branchial artery; in contrast, eel ANP always caused a large vasodilation of the branchial artery. In the dorsal aorta, indomethacin significantly reduced the AM2 vasodilation, but had no effect on the AM5 vasodilation. In contrast, removal of the endothelium significantly enhanced the AM5 vasodilation only. In the gonadal artery, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) significantly reduced the AM5 vasodilation suggesting a role for soluble guanylyl cyclase in the dilation, but l-NNA and removal of the endothelium had no effect. The results of this study indicate that AM2 and AM5 have distinct vasodilatory effects that may be due to the peptides signalling via different receptors to regulate vascular tone in eel.