6 resultados para Wireless links

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In traditional stop-and-wait strategy for reliable communications, such as ARQ, retransmission for the packet loss problem would incur a great number of packet transmissions in lossy wireless ad-hoc networks. We study the reliable multicast lifetime maximization problem by alternatively exploring the random linear network coding in this paper. We formulate such problem as a min-max problem and propose a heuristic algorithm, called maximum lifetime tree (MLT), to build a multicast tree that maximizes the network lifetime. Simulation results show that the proposed algorithms can significantly increase the network lifetime when compared with the traditional algorithms under various distributions of error probability on lossy wireless links.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multicast is an important mechanism in modern wireless networks and has attracted significant efforts to improve its performance with different metrics including throughput, delay, energy efficiency, etc. Traditionally, an ideal loss-free channel model is widely used to facilitate routing protocol design. However, the quality of wireless links would be affected or even jeopardized by many factors like collisions, fading or the noise of environment. In this paper, we propose a reliable multicast protocol, called CodePipe, with advanced performance in terms of energy-efficiency, throughput and fairness in lossy wireless networks. Built upon opportunistic routing and random linear network coding, CodePipe not only simplifies transmission coordination between nodes, but also improves the multicast throughput significantly by exploiting both intra-batch and inter-batch coding opportunities. In particular, four key techniques, namely, LP-based opportunistic routing structure, opportunistic feeding, fast batch moving and inter-batch coding, are proposed to offer substantial improvement in throughput, energy-efficiency and fairness. We evaluate CodePipe on ns2 simulator by comparing with other two state-of-art multicast protocols, MORE and Pacifier. Simulation results show that CodePipe significantly outperforms both of them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multicast is an important mechanism in modern wireless networks and has attracted significant efforts to improve its performance with different metrics including throughput, delay, energy efficiency, etc. Traditionally, an ideal loss-free channel model is widely used to facilitate routing protocol design. However, the quality of wireless links is affected or even jeopardized resulting in transmission failures by many factors like collisions, fading or the noise of environment. In this paper, we propose a reliable multicast protocol, called CodePipe, with energy-efficiency, high throughput and fairness in lossy wireless networks. Building upon opportunistic routing and random linear network coding, CodePipe can not only eliminate coordination between nodes, but also improve the multicast throughput significantly by exploiting both intra-batch and inter-batch coding opportunities. In particular, four key techniques, namely, LP-based opportunistic routing structure, opportunistic feeding, fast batch moving and inter-batch coding, are proposed to offer significant improvement in throughput, energy-efficiency and fairness.Moreover, we design an efficient online extension of CodePipe such that it can work in a dynamic network where nodes join and leave the network as time progresses. We evaluate CodePipe on ns2 simulator by comparing with other two state-of-art multicast protocols,MORE and Pacifier. Simulation results show that CodePipe significantly outperforms both of them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintaining QoS (quality of service) guaranteed communication links, and improving the energy consumption; are two aspects that received a significant consideration in the modern wireless sensor network research. This paper formulates a transmission power control problem which satisfies both considerations mentioned above. Moreover, a class of functions for an iterative controller was introduced and analyzed for its convergence. The experimental evaluation of the controller justifies the theoretical assertions as well as the applicability of the control scheme in wireless nodes with minimum measurement capabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel geographic routing protocol for multi-hop wireless sensor networks is presented. It exploits the broadcast nature of the wireless channel to enable on-demand cooperative relaying and leapfrogging for circumventing weak radio links. In order to achieve energy efficiency, a metric is introduced for next-hop selection that takes into account information on the residual battery energy, the geographical position of the sensor nodes, and the channel quality of the involved radio links when available. Performance results show that the completely decentralized protocol offers significant benefits by reducing the number of (re)transmissions required to reach the destination. This translates into network-wide energy savings that extend the network lifetime.